BUKTI KORESPONDENSI

SYARAT KHUSUS ARTIKEL JURNAL BEREPUTASI (Q3)

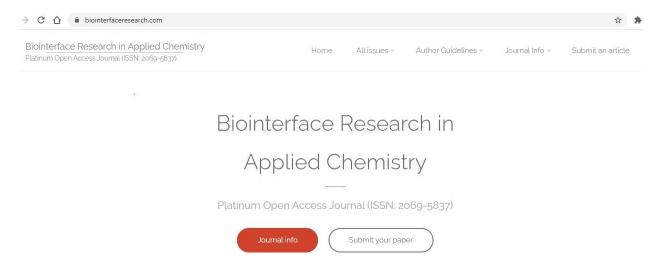
Judul Artikel: Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a

Potential Antioxidant Agent

Jurnal : Biointerface Research in Applied Chemistry (BRIAC)

Penulis : Andi Abriana, Hamsina Hamsina, Suriana Laga, dan Maulidiyah Maulidiyah

Penerbit : AMG Transcend Association


No	Perihal	Hari/Tanggal
1	Submission (original research, manuscript, cover letter, and author agreement form)	Sabtu/25 Juli 2020
2	Under review (proceed with peer-review)	Senin/27 Juli 2020
3	Progress manuscript (progress manuscript has been safety received)	Kamis/20 Agustus 2020
4	Accepted for publication	Senin/24 Agustus 2020
5	Proofreading, revision, and proofreading originality report (plagiarism detector)	Senin/24 Agustus 2020
6	Final manuscript	Selasa/25 Agustus 2020
7	Published (paper has been published online)	Minggu/30 Agustus 2020

Title: Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a Potential AntioxidantAgent

Volume 11, Issue 2, 2021, 8904 - 8914

https://doi.org/10.33263/BRIAC112.89048914

Biointerface Research in Applied Chemistry (ISSN: 2069-5837)

Submission (Tanggal 25 Juli 2020)

Biointerface Research in Applied Chemistry

www.BiointerfaceResearch.com

Author Agreement Form

Open Access Journal

All manuscripts submitted to the Biointerface Research in Applied Chemistry must be accompanied by this form.

Identification of organic constituents in cooking oil by adding turmeric as a potential antioxidant agent

Andi Abriana ^{1,*}, Hamsina Hamsina ², Suriana Laga ¹, and Maulidiyah Maulidiyah ^{3,**} ⁶

- Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi Indonesia.
- Department of Chemical Engineering, Faculty of Engineering, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi Indonesia.
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Universitas Halu Oleo, Kota Kendari 93231 Southeast Sulawesi Indonesia

Correspondence: * andi.abriana510@gmail.com (A.A.); maulid06@yahoo.com (M. M.)

I, the corresponding author declare that this manuscript is containing original results, that have not been published before and are not currently being considered for publication elsewhere.

I confirm that all the authors have made a significant contribution to this manuscript.

I confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

I understand that the *corresponding author* is the sole contact for the Editorial process. He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs.

Signed by corresponding author (electronic signature is accepted)

Note: The *corresponding author* has been authorized by all authors to sign this agreement and send together with manuscript.

Please indicate 3 reviewers:

Full name	Affiliation	E-mail	H-index	Research interest
			(mandatory >	
			10)	
1 Prof. Muhammad Nurdin,	Universitas Halu Oleo	mnurdin06@yahoo.com	17	Bioenergy and
Ph.D.				bioorganic chemistry
2 Dwiprayogo Wibowo,	Institut Teknologi dan	dwiprayogowibowo@yahoo.com	12	Analytical chemistry
Ph.D.	Kesehatan Avicenna			
3 Prof. Akrajas Ali Umar,	Universiti Kebangsaan	akrajas@ukm.edu.my	28	Organic Printed
Ph.D.	Malaysia			

Platinum Open Access Journal (ISSN: 2069-5837)

Type of the Paper (Article, Review, Communication, etc.) **Volume 10, Issue ..., 2020, ...- ...** https://doi.org/10.33263/BRIAC00.000000

Identification of organic constituents in cooking oil by adding turmeric as a potential antioxidant agent

Andi Abriana ^{1,*}, Hamsina Hamsina ², Suriana Laga ¹, and Maulidiyah Maulidiyah ^{3,**}

- Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi Indonesia.
- Department of Chemical Engineering, Faculty of Engineering, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi – Indonesia.
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Universitas Halu Oleo, Kota Kendari 93231 Southeast Sulawesi – Indonesia

Correspondence: * andi.abriana510@gmail.com (A.A.); maulid06@yahoo.com (M. M.)

Scopus Author ID 56648049800

Received: date; Revised: date; Accepted: date; Published: date

Abstract: The objective of this study to compare the fatty acids composition in cooking oil from repeated frying without added turmeric extract and added. The research design is testing the composition of fatty acids in repeated cooking oil using two types of treatment, namely cooking oil from frying without adding turmeric extract and cooking oil from frying with 0.03% turmeric extract added with 10 times frying repeat because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The analysis of fatty acids was conducted using gas chromatography. Based on these results that the fatty acid components were produced of saturated fatty acids, namely lauric acid, myristic acid, palmitic acid, and stearic acid, whereas unsaturated fatty acids also detected such as elaidic acid, oleic acid, linoleic acid, cis-11-eicosadienoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. The highest saturated fatty acid content in cooking oil before frying is palmitic acid (30.88%), whereas unsaturated fatty acid was oleic acid (35.86%). The highest content of saturated fatty acids in cooking oil has been added turmeric extract before frying is palmitic acid (28.5%), while unsaturated fatty acid of oleic acid was 32.97%.

Keywords: cooking oil; fatty acid; curcumin; chemical; content

© 2020 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cooking oil is one of the foodstuffs consumed by the majority of Indonesia's population with consumption levels reaching more than 2.5 million tons per year, or more than 12 kg/person/year, and also the dominant foodstuffs used by the community to process of feedstock into food made from palm oil [1]. As a food ingredient, palm oil has several advantages over other cooking oils, which contain carotene as an anti-cancer and tocopherol as a source of vitamin E3. In addition, palm oil can be a non-cholesterol cooking oil (low cholesterol levels) and contains fatty acids which are the main components of fats consisting of saturated and unsaturated fatty acids [2,3]. The main components of saturated fatty acids in palm cooking oil are palmitic acid (C-16), oleic acid (C-18: monounsaturated), and linoleic acid (C-18: polyunsaturated), while the other components are in amounts few are myristic acid (C-14) and stearic acid (C-18) [4]. Palm oil has a fatty acids composition which is different from other cooking oils because it contains a composition of saturated acids that is almost the

same as unsaturated fatty acids, namely 50% saturated fatty acids and 50% unsaturated fatty acids [5].

In the community, cooking oil is widely used in food processing because it can function as a medium for conveying heat, adding a savoury taste, adding nutritional value and calories in food, texture and appearance of food becomes more attractive, and a dry surface [6,7]. In addition, cooking oil can also be used for various food processing processes and is used in almost all types of food preparation such as frying, sautéing, grilling, baking, curling, rolling, and cooking by means of extrusion [8]. Frying is one way to cook raw food into cooked food using cooking oil. Deep frying processing requires a large amount of cooking oil in order to submerge entirely of food ingredients in cooking oil [5]. This condition encourages to use cooking oil repeatedly. The use of cooking oil the longer and more often (repeatedly), the quality will decrease due to oxidation fatty acid. Cooking oil has been oxidized can cause poisoning and other negative effects on human health, but the tendency is that people still often use cooking oil repeatedly for economic purposes [9,10]. In addition to economic factors, it is also due to an increase in prices of basic necessities due to government policies to raise fuel prices, thus encouraging people both industry and households to use cooking oil repeatedly. In developing countries, there are still many repeated frying using cooking oil repeatedly with economic goals. Cooking oil has become an inseparable part of the modern food processing system so that its safety is very important for health institutions throughout the world to provide health insurance among the public in consuming cooking oil [11].

The quality of cooking oil is determined by its constituent fatty acid components, which are classes of saturated or unsaturated fatty acids. Saturated fatty acids have adverse effects on health, otherwise unsaturated fatty acids are a good source of nutrition for health. Saturated fatty acids have the potential to increase blood cholesterol, while unsaturated fatty acids can reduce blood cholesterol. In the cooking process, the chemical composition of cooking oil used has contained frying foodstuffs of unsaturated fatty acids and other byproducts that can reduce the quality of cooking oil so that it becomes toxic and often carcinogenic [12]. The composition of fatty acids in cooking oil changes physicochemical properties due to the thermal process during frying. The physicochemical properties of cooking oil used repeatedly changed at a frying temperature of 180°C and a frying time of 10 minutes by repeating the frying five times, namely the formation of trans fatty acids (chemical properties) and increased viscosity (physical properties) [13]. Some in vivo research results suggest that consumption of thermally oxidized cooking oil may be unhealthy because it can affect the lipid profile, namely an increase in low-density lipoprotein (LDL), a decrease in high-density lipoprotein (HDL) and an increase in cholesterol levels, a haematological system, white blood cell counts. (WBC), neutrophil and lymphocyte counts, obesity, coronary heart disease (CHD) and cardiovascular disease, increased blood pressure, atherosclerosis, kidney function, and can induce lipid peroxidation and oxidative stress that have been linked to the pathogenesis of various degenerative diseases [14,15]. Consumption of coconut oil produces LDL cholesterol which is much higher than non-tropical oil [16].

Based on previous studies, the frying food with a deep frying method using a pan for 15 minutes. The results obtained are that the sample contains more unsaturated fatty acids than saturated, ie palmitic acid is the main saturated fatty acid; oleic acid is the main unsaturated fatty acid with linoleic acid, linolenic acid and palmitoleic acid in varying amounts [8]. Lim et al. has detected the falsification of fresh palm olein (FPO) with RCO using fatty acid compositions and Fourier-transform infrared (FTIR) spectral analysis combined with

chemometrics [17]. The FPO is added to the electric frying pan (DFT-6000) with a maximum capacity (5.5 L) and heated for about 20 minutes to reach a temperature of 180°C. The results show a tendency to decrease PUFAs which is consistent with the increasing magnitude of changes in the level of counterfeiting and this might be a good indicator to detect the occurrence of FPO forgery with RCO. Of the two results of this study more specific testing of cooking oil without using additional elements.

Especially, the objective in this study is applied cooking oil with additional elements, namely turmeric extract obtained from the turmeric plant (Curcuma longa) as one of the sources of natural antioxidants that contain curcumin. Turmeric is a useful source of natural antioxidants agent and can provide significant protection against damage to cooking oil due to free radicals and can also prevent fat peroxidation [18,19]. Curcumin (C₂₁H₂₀O₆) in turmeric is an active component, hydrophobic yellow-orange polyphenols derived from turmeric rhizomes and has been used in food as a stabilizer in jelly or as a natural dye in cheese and as an additive in traditional medicine [20–22]. According to Abriana and Johannes [23] showed that the addition of turmeric extract into cooking oil can reduce the formation of trans fatty acids and extend the time of use of cooking oil; and based on the results of the analysis of trans fatty acid levels, the best treatment is the addition of turmeric extract at a concentration of 0.03%. The objective to be achieved in this research is to compare the composition of fatty acids in cooking oil from repeated frying without added turmeric extract with cooking oil that has been added turmeric extract. The contribution of this research is more towards food safety and health for consuming fried food.

2. Experimental Methods

This study aims to test the composition of fatty acids in cooking oil from repeated frying using a laboratory experimental test with 2 (two) types of treatment, namely cooking oil from frying without adding turmeric extract and frying oil from frying with added turmeric extract with 10 repetitions of frying because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The main focus of research is to uncover the phenomenon of cooking oil due to repeated frying by analyzing fatty acid levels using gas chromatography.

2.1. Preparation of turmeric extract

The use of turmeric extract is a consideration of its function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during frying because it contains curcumin which is a yellow active component and can be extracted from turmeric rhizome. Turmeric is first selected and cleaned, then cut into small pieces or thinly. Then the turmeric is weighed as much as 100 grams for preparation of extraction. 100 grams of turmeric is dried in an oven at 100°C for 1 hour. After drying, then put into a three-neck flask plus 98% glacial acetic acid solvent that has been diluted with a ratio of 1:1 with a total volume of 300 mL solvent. The heater is turned on and the return cooler is activated. The zero time of extraction is determined when glacial acetic acid reaches its boiling point (118.1°C) and ends at the specified time for 75 minutes. The extraction results are cooled and filtered using filter paper. The filtrate is distilled while the residue is removed. The filtrate obtained from the extraction was put into a distillation flask to separate the turmeric extract from the solvent. The heater is turned on and the result is solvent and residue. The residue is dried in an oven at 120°C to remove the residual glacial acetic acid

that is still present in turmeric extract. After that weighing is done until a constant weight is obtained. Turmeric extract was added to cooking oil before frying food with a concentration of 0.03% [23].

2.2. Frying of food Test

Food frying is done using the deep frying method by using an electric frying kettle equipped with a temperature and time regulator. The frying process starts by putting fresh cooking oil into the frying boiler as much as 3.5 liters (maximum capacity), then the kettle is heated to a temperature of 180°C. Food is fried until cooked within 10 minutes and made as little as possible stirring to reduce the flow of convection in oil and oxidation reactions due to the aeration process. Analysis was carried out on fresh oil (oil that has not been used for frying foodstuffs) as a control and on two oil samples namely cooking oil from frying without added turmeric extract and cooking oil from frying with added turmeric extract. The oil used for repeating the frying is the same oil (it is not replaced and no additional volume of fresh oil is made). Frying is repeated 10 times with the same temperature and time of frying. Cooking oil samples were taken immediately after the frying process as much as 200 mL, then the oil in the kettle was allowed to cool down and continued with the next frying which is frying first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth [23]. Samples taken for analysis of fatty acid content are samples from the repetition of the first, fifth and tenth frying.

2.3. Characterization of Cooking Oil

First, the cooking oil is hydrolyzed into fatty acids, then transformed into a more volatile ester form. The transformation is carried out by methylation to obtain fatty acid methyl esters (FAME); Furthermore, this FAME was analyzed with GC-2010 (Gas Chromatograph) Plus Serial No. gas chromatography. C11804700336 Shimadzu Corp., using standard methods from The Association of Official Analytical Chemists (AOAC). The analysis starts by injecting of solvent as much as 1.0 μ L into the column to obtain a baseline. If the carrier gas flow and heating system are perfect, the peak of the solvent will appear in less than 1 minute. After obtaining the baseline, then proceed by injecting 1 μ L of the standard FAME mixture (Supelco TM 37 Component FAME Mix Catalog No. 47885-U, Bellefonte, PA, USA). When all the peaks are out, the prepared sample is injected as much as 1.0 μ L. Retention times and peak samples were measured for each component.

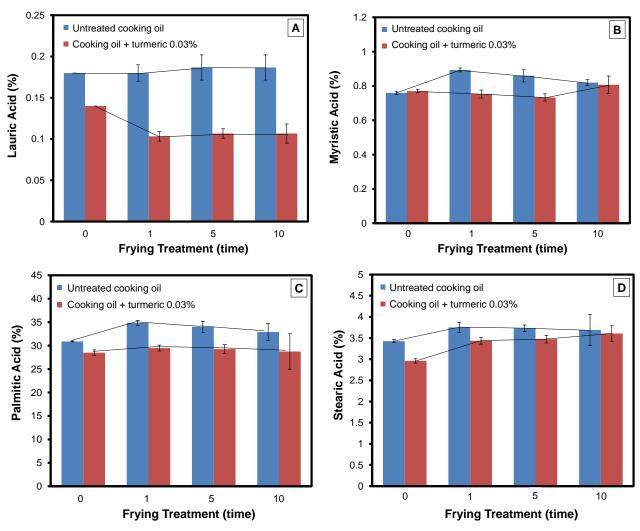
3. Results and Discussion

In this study, we produced the component of saturated fatty acids in cooking oil namely lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), and stearic acid (C18:0) while acids Unsaturated fats such as elaidic acid (C18:1n9t), oleic acid (C18:1n9c), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), and cis-11,14-eicosadienoic acid (C20:2). The highest saturated fatty acid content in fresh cooking oil (as control) is palmitic acid (C16:0) meanwhile unsaturated fatty acid is oleic acid (C18:1n9c). The higher content of palmitic acid (C16:0) in cooking oil is the major component of palmitic acid in palm oil [11]. The HPLC analysis has exhibited that cooking oil based on palm oil contains the high saturated fatty acid like palmitic acid 30.88% and unsaturated fatty acids namely oleic acid 35.86%,

linoleic acid 10.41%, stearic acid 3.43%, mistic acid 0.76%; lauric acid 0.18%; linolenic acid 0.18%; cis-11-eicosenoic acid 0.14%; elaidic acid 0.09% and cis-11,14-eicosadienoic acid 0.07% (Table 1).

Table 1. Composition of fatty Acids from recycled frying cooking oil

Treatment	Fatty Acids	stron or rate	Standards based on O'Brien (2003) [24]			
		0	1	5	10	
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.18 ± 0.003	0.18 ± 0.010	0.19 ± 0.015	0.19 ± 0.015	0.1-1.0
	Myristic Acid, C14:0	0.76 ± 0.010	0.89 ± 0.012	0.86 ± 0.036	0.82 ± 0.017	0.9-1.5
	Palmitic Acid, C16:0	30.88 ± 0.080	34.83 ± 0.555	34.00 ± 1.167	32.90 ± 1.795	41.8-46.8
	Stearic Acid, C18:0	3.43 ± 0.035	3.75 ± 0.115	3.73 ± 0.075	3.68 ± 0.367	4.5-5.1
	Unsaturated Fatty Acids					
	Elaidic Acid, C18:1n9t	0.09 ± 0.010	0.09 ± 0.006	0.11 ± 0.001	0.11 ± 0.001	<1
Untreated	Oleic Acid, C18:1n9c	35.86 ± 0.145	40.47 ± 0.746	40.18 ± 0.812	38.52 ± 2.807	37.3-40.8
Cooking Oil	Linoleic Acid, C18:2n6c	10.41 ±0.02	11.56 ±0.165	11.41 ±0.214	10.61 ±0.735	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ± 0.006	0.13 ±0.006	0.13 ±0.006	0.13 ± 0.015	-
	Linolenic Acid, C18:3n3	0.18 ± 0.005	0.20 ± 0.010	0.19 ± 0.003	0.17 ± 0.006	<1.5
	Cis-11,14- Eicosedienoic Acid, C20:2	0.07 ±0.001	0.09 ±0.021	0.10 ±0.017	0.09 ±0.015	-
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.14 ± 0.001	0.10 ± 0.006	0.11 ± 0.006	0.11 ± 0.012	0.1-1.0
	Myristic Acid, C14:0	0.77 ± 0.010	0.75 ± 0.016	0.73 ± 0.021	0.81 ± 0.051	0.9-1.5
	Palmitic Acid, C16:0	28.5 ± 0.580	29.49 ± 0.640	29.25 ± 0.957	28.75 ± 3.788	41.8-46.8
	Stearic Acid, C18:0	2.96 ± 0.050	3.44 ± 0.081	3.47 ± 0.090	3.61 ± 0.182	4.5-5.1
G 11	Unsaturated Fatty Acids					
Cooking Oil +	Elaidic Acid, C18:1n9t	0.07 ± 0.001	0.09 ± 0.006	0.09 ± 0.006	0.09 ± 0.006	<1
0.03%	Oleic Acid, C18:1n9c	32.97 ± 0.560	33.24 ± 1.025	34.05 ± 1.100	35.43 ± 1.974	37.3-40.8
Turmeric	Linoleic Acid, C18:2n6c	8.89 ±0.160	9.74 ±0.211	9.94 ±0.495	10.19 ±0.560	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ± 0.006	0.11 ±0.006	0.12 ±0.001	0.12 ±0.006	-
	Linolenic Acid, C18:3n3	0.18 ±0.003	0.18 ± 0.015	0.18 ± 0.017	0.18 ± 0.012	<1.5
	Cis-11,14- Eicosedienoic Acid, C20:2	0.06 ± 0.001	0.05 ± 0.010	0.04 ±0.010	0.06 ± 0.010	-


In addition, we added the turmeric extract 0.03% into cooking oil to suppress oxidation reaction shows that the high saturated fatty acid such as palmitic acid 28.5% and unsaturated fatty acids content of oleic acid 32.97%, linoleic acid 8.89%, stearic acid 2.96%, myristic acid 0.77%, linolenic acid 0.18%; lauric acid 0.14%, cis-11-eicosenoic acid 0.14%; elaidic acid 0.07% and cis-11,14-eicosadienoic acid 0.06% (Table 1). The composition of most fatty acids in recycled cooking oil (RCO) is in the range according to Codex standards, except for C8:0, C10:0, C11:0, C11:0, trans C18:1, and polyunsaturated fatty acids (PUFAs), C20:5 [17]. According to Awogbemi [25] reported that palm oil contained 87.7% unsaturated fatty acids

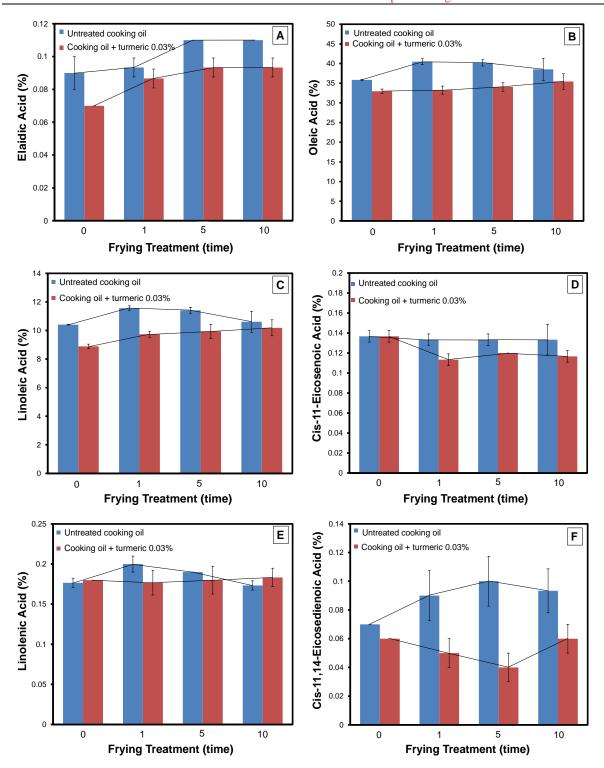
and 12.3% saturated fatty acids. Based on these results also show the variation of cooking oil used and type of food fried greatly affect the properties and composition of fatty acids. Overall, in fresh cooking oil was contained 63.16% linoleic acid 20.72%, linolenic acid 10.53%, stearic acid 5.26% and the smallest component was palmitic acid 0.33% [26].

3.1. Saturated Fatty Acids

The saturated fatty acid has been investigated into repeated frying cooking oil based on palm oil, we found the lauric acid, myristic acid, palmitic acid and stearic acid compounds. Certainly, palm oil as feedstock to produce cooking oil contains 92% saturated fatty acids including 48% lauric acid, myristic acid 20%, and palmitic acid 9%, with monounsaturated fatty acids 6% and polyunsaturated fatty acids 1.7% [27]. Figure 1 extracted from Table 1 to observe the range composition and an upward or downward trend in each composition of organic constituents in cooking oil. Figure 1 was recurring frying oil without added turmeric extract showed that before fried the lauric acid of 0.18% (0 times), first frying 0.18% (1 time), fifth frying 0.19% (5 times) and tenth frying 0.19% (10 times). We also compare each organic constituents in cooking oil with results that have been studied from O'brien and Richard D. [24] as standard organic constituents in fats and oils. Based on frying treatment, the lauric acid frequency looks to increase, it means that the repetition of a frying treatment can increase lauric acid compound. Then it is compared with standard 0.1-1.0 shows that not exceed the specified standard.

Meanwhile, the cooking oil has been added turmeric extract 0.03% contains lauric acid of 0.14% (0 times), 0.10% (1 time), 0.11% (5 times) and 0.11% (10 times). The lauric acid frequency was decreased in the first frying, then increase in the fifth and tenth frying (+0.01). By adding 0.03% turmeric extract can reduce the lauric acid compound, then it is compared with a standard data where it does not exceed the predetermined. The lauric acid is also mostly found in virgin coconut oil (VCO) which consists of 90% medium-chain fatty acids (dominated by lauric acid which is 45-55% and 10% long-chain fatty acids). If it is compared with oil palm, VCO has a higher of lauric acid content which is 54.06%, meanwhile in palm oil of 0.10%. Lauric acid plays a role to maintain health, among others, functions to kill various types of microbes derived from fatty acids, to increase metabolic activity, and protect the body from disease and accelerate healing [28]. Among saturated fatty acids, lauric acid has been shown to contribute the least to fat accumulation [29]. Likewise, myristic acid has not exceeded the predetermined standard. Myristic acid (C14:0) is a fatty acid that is found in palm kernel oil and coconut oil which can increase low-density lipoprotein (LDL) cholesterol levels, but it is a minor group in food. It is a long-chain saturated fatty acid (14:0) and also one of the fattiest acids found in milk fat (above 10%) [30].

Figure 1. Saturated fatty acids component, (A) Lauric acid, (B) Myristic acid, (C) Palmitic acid and (D) Stearic acid


Figure 1C the palmitic acid was quite increased along with the repetition of the frying and its still lower than the standard which has been specified (41.8-46.8). Palmitic acid is the main fatty acid in palm oil [31]. Palmitic acid is also the main component of saturated fatty acids in food which contains in vegetable oils 6-10% and can increase LDL cholesterol levels. The presence of palmitic acid in cooking oil can be used as an indicator to detect falsification of fresh palm oil (FPO) with RCO using fatty acid composition analysis (FAC) [17]. Figure 1D also exhibited of the stearic acid compound can be seen that has increased along with the repetition of the frying and compared with a standard in a range of 4.5-5.1 where the saturated fatty acid of stearic acid is still lower from predetermined standards. It is a major component of various types of fat with different amounts, such as animal fat (beef fat) containing 15-20% and only a little in vegetable oil, 4-5% [31]. Stearic acid lowers LDL and HDL cholesterol concentrations when compared with palmitic acid because these fatty acids are quickly converted to monounsaturated fatty acids and oleic acid interesterification of fats rich in palmitic acid or stearic acid does not appear to affect serum lipid fasting and (apo) lipoprotein [32].

Based on saturated fatty acid results and compared with standard fats and oils, we discover that the oil from repeated frying produces saturated fatty acids that do not exceed the specified standard. This means that repeated frying oil based on palm oil is still safe for consumption because of all the saturated fatty acids found within the reasonable standard range, though that can raise cholesterol levels (myristic acid and palmitic acid). In vegetable oils such as palm oil is dominated by more carbon atoms, whereas in animal oils are odd carbon atoms and contain more polyunsaturated fatty acids (PUFA) [33]. Cooking oil with high saturated fatty acid content will affect the stability of food items that are fried during frying [34,35]. In addition, the high content of fatty acids causes oil to be easily damaged during cooking processing because the oil will be heated continuously at high temperatures and direct contact with oxygen in the surrounding air which facilitates the oxidation reaction to the oil. According to Baba-Moussa et al. [12] an increase in temperature followed by a long heating time indicates that an increase in the fatty acid component forms triglycerides. The result of triglyceride hydrolysis will produce saturated and unsaturated fatty acids based on the presence or absence of carbon chain double bonds in the molecule.

3.2. Unsaturated Fatty Acids

The presence of organic constituents in repeated frying oil have been examined that it is containing elaidic acid, oleic acid, linoleic acid, cis-11-eicosenoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. Based on Figure 2A the content of untreated cooking oil from elaidic acid showed that 0.09% (0 times), 0.09% (1 time), 0.11% (5 times) and 0.11% (10 times), while the frying oil added 0.03% turmeric extract showed the treatment before frying 0.07% (0 times), 0.09% (1 time), 0.09% (5 times) and 0.09% (10 times). If seen from the frequency of elaidic acid (Figure 2A) that repeated frying can increase the level of elaidic acid and compare with standard <1 that it does not exceed the specified standard. This is because trans fatty acids (TFA) in elaidic acid are unsaturated fatty acid with at least one double bond in the form of trans configuration that can occur naturally from ruminants-based meat and dairy products, or artificially through partial hydrogenation of vegetable oils in industry food processing [36]. Sartika also reported that trans fatty acids (elaidate) were only formed after the second repetition of deep-frying, and their levels increased with the repeated use of oil. Based on the initial formation of trans fatty acids, the frying process should be done on medium heat (<200°C) and the cooking oil used should not exceed 2 (two) repetitions. Not so in the oleic acid compound (Figure 2B) shows a tendency to vary, if it is compared with the standard of 37.3-40.8. Whereas the recycled frying oil added with 0.03% turmeric extract showed an increase along with the repetition of the frying and when compared with the standard 37.3-40.8. These results indicate that oleic acid is still lower than the standard value.

Furthermore, the content of linoleic acid (Figure 2C) in untreated cooking oil showed the same conditions varying when compared with the standard of 9.1-11.0. One that met the standard was the treatment before the tenth frying and frying, while those that do not meet the standards in the first and fifth frying treatment. Then, it compared with frying cooking oil added 0.03% turmeric extract showed an increase along with the repetition of the frying and compared with the standard the first, fifth and tenth frying have met the standards. Meanwhile which did not meet the standards in the treatment before the addition of turmeric extract such as the first and fifth frying. From this result showed that repeated frying can increase the levels of linoleic acid in the oil from repeated frying by adding 0.03% turmeric extract. It is due to the conjugation of linolenic acid isomer refers to a group of positions and geometrical isomers of omega-3-α-linolenic acid essential acids (cis-9, cis-12, cis-15 C18: 3; ALA) [37,38].

Figure 2. Unsaturated fatty acids component (A) elaidic acid, (B) oleic acid, (C) linoleic acid, (D) cis-11-eicosenoic acid, (E) linolenic acid, and (F) cis-11,14-eicosadienoic acid

The content of cis-11-eicosenoic acid (Figure 2D) in untreated cooking oil and added 0.03% turmeric extract has decreased levels caused by slow oxidation reactions against cis-11-eicosenoic acid. The frequency of linolenic acid (Figure 2E) in unprocessed cooking oil shows a variable trend. At the beginning of the frying (1 time), there was an increase compared to those not treated, but over time the frying duration decreases. In otherwise, by adding turmeric extract shows a quite static level before frying to the tenth repetition treatment. It shows the turmeric extract can suppress the occurrence oxidation reaction. Meanwhile, Figure 2F depicts

cis-11-14-eicosadienoic acid has increased in untreated cooking oil, while the unique by adding turmeric extract dramatically decrease levels. It is concluded cooking oil without treatment has shown increase unsaturated acid levels. The performance of turmeric extract has quite demonstrated efficiency to suppress chemical reaction during frying treatment [39]. In addition, turmeric extract can function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during repeated frying. This will affect the composition of fatty acids contained in cooking oil. According to Kim and Clifton [40] showed that curcumin (diferuloylmethane) is the main secondary metabolite in turmeric extract which is beneficial to the human body as antioxidant and anti-inflammatory properties. Curcumin as a bioactive component has been shown to be a broad biological action. To date, it has been reported that natural coloured extracts are isolated from turmeric by various methods such as maceration, digestion, microwave and infusion [21]. Turmeric varieties studied by Tanvir et al. [18] is a useful source of natural antioxidants and can provide protection against free radical damage. Curcumin can be used as a food additive and is also good for use as conventional medicine [41].

4. Conclusions

This study reports the chemical composition of cooking oil consisting of saturated fatty acids, such as lauric acid, myristic acid, palmitic acid, and stearic acid. Whereas, the unsaturated fatty acids of elaidic acid, oleic acid, linoleic acid, cis-11-eicosedienoic acid, linolenic acid, and cis-11,14-eicosedienoic acid. The highest saturated fatty acid levels in cooking oil before frying are palmitic acid of 30.88%, whereas unsaturated fatty acids, namely oleic acid of 35.86%. The highest saturated fatty acid content in the oil which has added turmeric extract before frying is palmitic acid of 28.5%, while unsaturated fatty acids like oleic acid of 32.97%. Turmeric extract added to cooking oil can function as an anticosidan so that it can inhibit thermal oxidation in cooking oil during repeated frying. The treatment of repeated frying affects the fatty acids contained in repeated cooking oils, both saturated fatty acids and unsaturated fatty acids.

Acknowledgments

We are grateful for the laboratory facilities from the Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar in conducting this research.

Conflicts of Interest

We declare that this article has no conflict of interest

References

- 1. Prasetyo, J. Studi Pemanfaatan Minyak Jelantah Sebagai Bahan Baku Pembuatan Biodiesel. *Jurnal Ilmiah Teknik Kimia* **2018**; 2, pp. 45–54.
- 2. Gashaw, A.; Getasetegn, M. Chemistry and Health Impacts of Trans Fatty Acids. *Journal of Chemical Technology & Metallurgy* **2018**; *53*, pp. 159–169.
- 3. Rule, D.C.; Liebman, M.; Liang, Y. Bin Impact of different dietary fatty acids on plasma and liver lipids is influenced by dietary cholesterol in rats. *The Journal of Nutritional Biochemistry* **1996**; 7, pp. 142–149.
- 4. Falade, A.O.; Oboh, G.; Okoh, A.I. Potential health implications of the consumption of

- thermally-oxidized cooking oils—a review. *Polish journal of food and nutrition sciences* **2017**; *67*, pp. 95–106.
- 5. Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry—A review. *Food bioscience* **2015**; *10*, pp. 26–41.
- 6. Dewi, T.I.; Twilana, M. Bulk Cooking Oil Quality Improvement Using Adsorbent Activated Bentonite. *UNESA Journal of Chemistry* **2012**; *1*, pp. 47–53.
- 7. Sartika, R.A.D. Pengaruh suhu dan lama proses menggoreng (deep frying) terhadap pembentukan asam lemak trans. *Makara Journal of Science* **2009**; *13*, pp. 23–28.
- 8. Oluwaniyi, O.O.; Dosumu, O.O.; Awolola, G.V. Effect of cooking method on the proximate, amino acid and fatty acid compositions of Clarias gariepinus and Oreochromis niloticus. *Journal of the Turkish Chemical Society Section A: Chemistry* **2017**; *4*, pp. 115–132.
- 9. Weber, J.; Bochi, V.C.; Ribeiro, C.P.; Victório, A. de M.; Emanuelli, T. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. *Food Chemistry* **2008**; *106*, pp. 140–146.
- 10. Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. *Comprehensive reviews in food science and food safety* **2006**; *5*, pp. 169–186.
- 11. Akhtar, S.; Tanveer, M.; Ismail, A.; Ismail, T.; Hussain, M. Safety evaluation of oil samples collected from different food points of multan city of Pakistan. *International Journal of Food and Allied Sciences* **2018**; *3*, pp. 43–48.
- 12. Baba-Moussa, F.; Zynzendorf, Y.N.; Bonou, J.; Gbénou, J.; Moudachirou, M.; Kotchoni, S.O.; Toukourou, F.; Baba-Moussa, L. Kit reliability for controlling the quality of oils in food frying. *Journal of Microbiology, Biotechnology and Food Sciences* **2020**; *9*, pp. 121–134.
- 13. Abriana, A.; Mahendradatta, M.; Djide, N.; Zainal, Z. Analysis of Trans Fatty Acid Content and Viscosity of the Repeteadly Used Frying Oil. *International Journal of Agriculture System* **2013**; *I*, pp. 71–79.
- 14. Abiona, O.O.; Awojide, S.H.; Anifowoshe, A.J.; Babalola, O.B. Comparative study on effect of frying process on the fatty acid profile of vegetable oil and palm oil. *E-International Scientific Research Journal* **2011**; *3*, pp. 210–219.
- 15. Kala, A.L.A. Cis-, trans-and saturated fatty acids in selected hydrogenated and refined vegetable oils in the Indian market. *Journal of the American Oil Chemists' Society* **2012**; 89, pp. 1813–1821.
- 16. Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The Effect of Coconut Oil Consumption on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Clinical Trials. *Circulation* **2020**; *141*, pp. 803–814.
- 17. Lim, S.Y.; Abdul Mutalib, M.S.; Khaza'ai, H.; Chang, S.K. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. *International Journal of Food Properties* **2018**; *21*, pp. 2428–2451.
- 18. Tanvir, E.M.; Hossen, M.; Hossain, M.; Afroz, R.; Gan, S.H.; Khalil, M.; Karim, N. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. *Journal of Food Quality* **2017**; 2017, pp. 1–8.

- 19. Shankar, S.; Srivastava, R.K. Curcumin: structure, biology and clinical applications. In *Nutrition, diet and cancer*; Springer, **2012**; pp. 413–457.
- 20. Kim, J.H.; Yang, H.J.; Kim, Y.-J.; Park, S.; Lee, O.; Kim, K.S.; Kim, M.J. Korean turmeric is effective for dyslipidemia in human intervention study. *Journal of Ethnic Foods* **2016**; *3*, pp. 213–221.
- 21. Nabati, M.; Mahkam, M.; Heidari, H. Isolation and characterization of curcumin from powdered rhizomes of turmeric plant marketed in Maragheh city of Iran with soxhlet technique. *Quarterly Journal of Iranian Chemical Communication* **2014**; 2, pp. 236–243.
- 22. Palve, Y.P.; Nayak, P.L. Curcumin: a wonder anticancer drug. *International Journal of Pharmacy and Biomedical Sciences* **2012**; *3*, pp. 60–69.
- 23. Abriana, A.; Johannes, E. Turmeric extract as an antioxidant in repeatedly used cooking oil. *International Journal of Scientific & Technology Research* **2014**; *3*, pp. 347–350.
- 24. O'brien, R.D. Fats and oils: formulating and processing for applications; CRC press, **2008**; ISBN 1420061674.
- 25. Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. *International Journal of Low-Carbon Technologies* **2019**; *14*, pp. 417–425.
- 26. Bazina, N.; He, J. Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. *Journal of food science and technology* **2018**; *55*, pp. 3085–3092.
- 27. Kwon, S.Y.; Massey, K.; Watson, M.A.; Hussain, T.; Volpe, G.; Buckley, C.D.; Nicolaou, A.; Badenhorst, P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. *Life science alliance* **2020**; *3*, pp. 1–17 https://doi.org/10.26508/lsa.201900356.
- 28. Suryani, S.; Sariani, S.; Earnestly, F.; Marganof, M.; Rahmawati, R.; Sevindrajuta, S.; Mahlia, T.M.I.; Fudholi, A. A Comparative Study of Virgin Coconut Oil, Coconut Oil and Palm Oil in Terms of Their Active Ingredients. *Processes* **2020**; *8*, pp. 402–413 https://doi.org/10.3390/pr8040402.
- 29. Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. *Journal of the American Oil Chemists' Society* **2015**; *92*, pp. 1–15.
- 30. Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the components from goat's milk, recent advances for functional dairy products development and its implications on human health. *Journal of Functional Foods* **2019**; *52*, pp. 243–257.
- 31. Taufik, M.; Lioe, H.N.; Yuliana, N.D. Evaluation of Major Fatty Acids Determination in Palm Oil by Gas Chromatography-Flame Ionization Detection. *Agritech* **2016**; *36*, pp. 308–316.
- 32. van Rooijen, M.A.; Mensink, R.P. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers-A Systematic Review. *Nutrients* **2020**; *12*, pp. 615–629 https://doi.org/10.3390/nu12030615.
- 33. Petrović, M.; Kezić, N.; Bolanča, V. Optimization of the GC method for routine analysis of the fatty acid profile in several food samples. *Food Chemistry* **2010**; *122*, pp. 285–291.

- 34. Alireza, S.; Tan, C.P.; Hamed, M.; Che Man, Y.B. Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. *International food research journal* **2010**; *17*, pp. 295–302.
- 35. Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. *Food and chemical toxicology* **2010**; *48*, pp. 2972–2979.
- 36. Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and cardiovascular disease. *New England Journal of Medicine* **2006**; *354*, pp. 1601–1613.
- 37. Taha, A.Y. Linoleic acid–good or bad for the brain? *NPJ science of food* **2020**; *4*, pp. 1–6.
- 38. Białek, M.; Czauderna, M.; Białek, A. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. *Journal of Animal and Feed Sciences* **2017**; *26*, pp. 3–17.
- 39. Rebiai, A.; Belfar, M.L.; Mesbahi, M.A.; Nani, S.; Tliba, A.; Amara, D.G.; Chouikh, A. Fatty acid composition of Algerian propolis. *Journal of Fundamental and Applied Sciences* **2017**; *9*, pp. 1656–1671.
- 40. Kim, Y.; Clifton, P. Curcumin, cardiometabolic health and dementia. *International journal of environmental research and public health* **2018**; *15*, pp. 2093.
- 41. Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. *Nutrition journal* **2017**; *16*, pp. 68–78 https://doi.org/10.1186/s12937-017-0293-y.

Under Review (Tanggal 27 Juli 2020)

Re: ***SPAM*** Maulidiyah et al. - 2020 - New Manuscript Submission for BRAC 2

Yahoo Mail/Terkirim

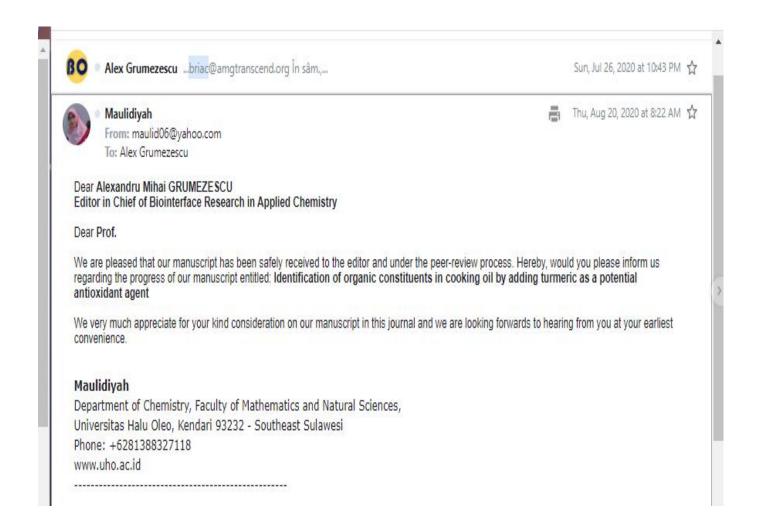
Alex Grumezescu <al.grumezescu@gmail.com> Kepada: Maulidiyah

Sen, 27 Jul 2020 jam 13.43 🔺

Dear Author,

the paper was safely received.

We will proceed with peer-review.


Thank you for your submission.

Best regards,

Alex

Alexandru Mihai GRUMEZESCU Editor in Chief http://grumezescu.com/ http://biointerfaceresearch.com/ Biointerface Research in Applied Chemistry review@BiointerfaceResearch.com briac@amgtranscend.org

Progress Manuscript (Tanggal 20 Agustus 2020)

andi abriana <andi.abriana510@gmail.com>

[BRIAC]Accepted for Publication: Identification of organic constituents in cooking oil by adding turmeric as a potential antioxidant agent

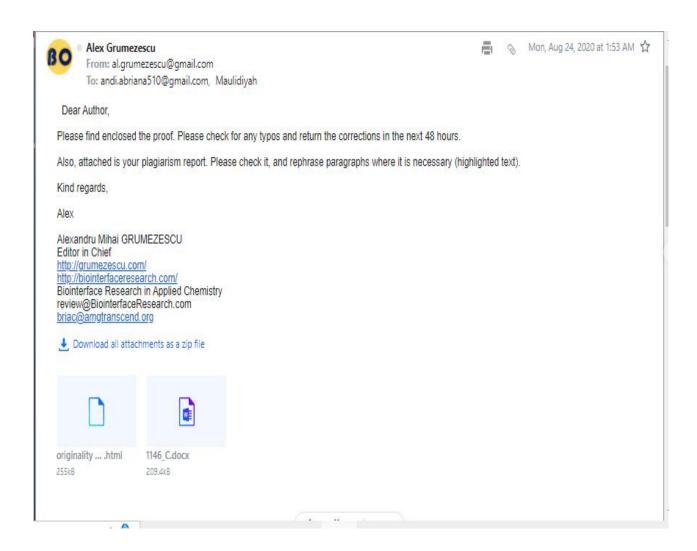
1 pesan

Alex Grumezescu <al.grumezescu@gmail.com>
Kepada: andi.abriana510@gmail.com, Maulidiyah <maulid06@yahoo.com>

24 Agustus 2020 pukul 16.50

Dear Author,

I am pleased to inform you that your paper has been officially accepted for publication.


I will make the final preparations for publication, then return it to you for your approval.

Kind regards,

Alex

Alexandru Mihai GRUMEZESCU
Editor in Chief
http://grumezescu.com/
http://biointerfaceresearch.com/
Biointerface Research in Applied Chemistry
review@BiointerfaceResearch.com
briac@amgtranscend.org

Proofreading (Tanggal 24 Agustus 2020)

Biointerface Research in Applied Chemistry

Platinum Open Access Journal (ISSN: 2069-5837)

Article

Volume 10, Issue ..., 2020, ...- ...

https://doi.org/10.33263/BRIAC00.000000

Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a Potential Antioxidant Agent

Andi Abriana ^{1,*}, Hamsina Hamsina ², Suriana Laga ¹, Maulidiyah Maulidiyah ^{3,*}

- Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi Indonesia.
- ² Department of Chemical Engineering, Faculty of Engineering, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi – Indonesia.
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Universitas Halu Oleo, Kota Kendari 93231 Southeast Sulawesi – Indonesia
- * Correspondence: andi.abriana510@gmail.com (A.A.); maulid06@yahoo.com (M.M.);

Scopus Author ID 56648049800

Received: date; Revised: date; Accepted: date; Published: date

Abstract: The objective of this study to compare the fatty acids composition in cooking oil from repeated frying without added turmeric extract and added. The research design is testing the composition of fatty acids in repeated cooking oil using two types of treatment, namely cooking oil from frying without adding turmeric extract and cooking oil from frying with 0.03% turmeric extract added with 10 times frying repeat because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The analysis of fatty acids was conducted using gas chromatography. Based on these results that the fatty acid components were produced of saturated fatty acids, namely lauric acid, myristic acid, palmitic acid, and stearic acid, whereas unsaturated fatty acids also detected such as elaidic acid, oleic acid, linoleic acid, cis-11-eicosadienoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. The highest saturated fatty acid content in cooking oil before frying is palmitic acid (30.88%), whereas unsaturated fatty acid was oleic acid (35.86%). The highest content of saturated fatty acids in cooking oil has been added turmeric extract before frying is palmitic acid (28.5%), while unsaturated fatty acid of oleic acid was 32.97%.

Keywords: cooking oil; fatty acid; curcumin; chemical; content.

© 2020 by the authors. This article is an open open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cooking oil is one of the foodstuffs consumed by the majority of Indonesia's population with consumption levels reaching more than 2.5 million tons per year, or more than 12 kg/person/year, and also the dominant foodstuffs used by the community to process of feedstock into food made from palm oil [1]. As a food ingredient, palm oil has several advantages over other cooking oils, which contain carotene as an anti-cancer and tocopherol as a source of vitamin E3. In addition, palm oil can be a non-cholesterol cooking oil (low cholesterol levels) and contains fatty acids, which are the main components of fats consisting of saturated and unsaturated fatty acids [2,3]. The main components of saturated fatty acids in palm cooking oil are palmitic acid (C-16), oleic acid (C-18: monounsaturated), and linoleic acid (C-18: polyunsaturated), while the other components are in amounts, few are myristic acid (C-14) and stearic acid (C-18) [4]. Palm oil has a fatty acids composition, which is different from other cooking oils because it contains a composition of saturated acids that is almost the

Commented [A1]: for each author please provide ORCID

Commented [A2]: Please underline the lastname (family name) of each author. (The right order is Firstname Lastname)

same as unsaturated fatty acids, namely 50% saturated fatty acids and 50% unsaturated fatty acids [5].

In the community, cooking oil is widely used in food processing because it can function as a medium for conveying heat, adding a savoury taste, adding nutritional value and calories in food, texture, and appearance of food becomes more attractive, and a-dry surface [6,7]. In addition, cooking oil can also be used for various food processing processes and is used in almost all types of food preparation such as frying, sautéing, grilling, baking, curling, rolling, and cooking by means of extrusion [8]. Frying is one way to cook raw food into cooked food using cooking oil. Deep frying processing requires a large amount of cooking oil in order to submerge entirely of food ingredients in cooking oil [5]. This condition encourages to use cooking oil repeatedly. The use of cooking oil the longer and more often (repeatedly), the quality will decrease due to oxidation fatty acid. Cooking oil has been oxidized can cause poisoning and other negative effects on human health, but the tendency is that people still often use cooking oil repeatedly for economic purposes [9,10]. In addition to economic factors, it is also due to an increase in prices of basic necessities due to government policies to raise fuel prices, thus encouraging people both industry and households to use cooking oil repeatedly. In developing countries, there are still many repeated frying using cooking oil repeatedly with economic goals. Cooking oil has become an inseparable part of the modern food processing system so that its safety is very important for health institutions throughout the world to provide health insurance among the public in consuming cooking oil [11].

The quality of cooking oil is determined by its constituent fatty acid components, which are classes of saturated or unsaturated fatty acids. Saturated fatty acids have adverse effects on health,; otherwise unsaturated fatty acids are a good source of nutrition for health. Saturated fatty acids have the potential to increase blood cholesterol, while unsaturated fatty acids can reduce blood cholesterol. In the cooking process, the chemical composition of cooking oil used has contained frying foodstuffs of unsaturated fatty acids and other byproducts that can reduce the quality of cooking oil so that it becomes toxic and often carcinogenic [12]. The composition of fatty acids in cooking oil changes physicochemical properties due to the thermal process during frying. The physicochemical properties of cooking oil used repeatedly changed at a frying temperature of 180°C and a frying time of 10 minutes by repeating the frying five times, namely the formation of trans fatty acids (chemical properties) and increased viscosity (physical properties) [13]. Some in vivo research results suggest that consumption of thermally oxidized cooking oil may be unhealthy because it can affect the lipid profile, namely an increase in low-density lipoprotein (LDL), a decrease in high-density lipoprotein (HDL) and an increase in cholesterol levels, a haematological system, white blood cell counts. (WBC), neutrophil and lymphocyte counts, obesity, coronary heart disease (CHD) and cardiovascular disease, increased blood pressure, atherosclerosis, kidney function, and can induce lipid peroxidation and oxidative stress that have been linked to the pathogenesis of various degenerative diseases [14,15]. Consumption of coconut oil produces LDL cholesterol, which is much higher than non-tropical oil [16].

Based on previous studies, the frying food with a deep frying method using a pan for 15 minutes. The results obtained are that the sample contains more unsaturated fatty acids than saturated, ie, palmitic acid is the main saturated fatty acid; oleic acid is the main unsaturated fatty acid with linoleic acid, linolenic acid, and palmitoleic acid in varying amounts [8]. Lim et al. has detected the falsification of fresh palm olein (FPO) with RCO using fatty acid compositions and Fourier-transform infrared (FTIR) spectral analysis combined with

chemometrics [17]. The FPO is added to the electric frying pan (DFT-6000) with a maximum capacity (5.5 L) and heated for about 20 minutes to reach a temperature of 180°C. The results show a tendency to decrease PUFAs, which is consistent with the increasing magnitude of changes in the level of counterfeiting, and this might be a good indicator to detect the occurrence of FPO forgery with RCO. Of the two results of this study, more specific testing of cooking oil without using additional elements.

Especially, the objective in this study is applied cooking oil with additional elements, namely turmeric extract obtained from the turmeric plant (Curcuma longa) as one of the sources of natural antioxidants that contain curcumin. Turmeric is a useful source of natural antioxidants agents and can provide significant protection against damage to cooking oil due to free radicals and can also prevent fat peroxidation [18,19]. Curcumin (C₂₁H₂₀O₆) in turmeric is an active component, hydrophobic yellow-orange polyphenols derived from turmeric rhizomes, and has been used in food as a stabilizer in jelly or as a natural dye in cheese and as an additive in traditional medicine [20–22]. According to Abriana and Johannes [23] showed that the addition of turmeric extract into cooking oil ean could reduce the formation of trans fatty acids and extend the time of use of cooking oil; and based on the results of the analysis of trans fatty acid levels, the best treatment is the addition of turmeric extract at a concentration of 0.03%. The objective to be achieved in this research is to compare the composition of fatty acids in cooking oil from repeated frying without added turmeric extract with cooking oil that has been added turmeric extract. The contribution of this research is more towards food safety and health for consuming fried food.

2. Materials and Methods

This study aims to test the composition of fatty acids in cooking oil from repeated frying using a laboratory experimental nexperimental laboratory test with 2 (two) types of treatment, namely cooking oil from frying without adding turmeric extract and frying oil from frying with added turmeric extract with 10 repetitions of frying because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The main focus of research is to uncover the phenomenon of cooking oil due to repeated frying by analyzing fatty acid levels using gas chromatography.

2.1. Preparation of turmeric extract.

The use of turmeric extract is a consideration of its function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during frying because it contains curcumin, which is a yellow active component and can be extracted from turmeric rhizome. Turmeric is first selected and cleaned, then cut into small pieces or thinly. Then the turmeric is weighed as much as 100 grams for preparation of extraction. 100 grams of turmeric is dried in an oven at 100°C for 1 hour. After drying, then put into a three-neck flask plus 98% glacial acetic acid solvent that has been diluted with a ratio of 1:1 with a total volume of 300 mL solvent. The heater is turned on, and the return cooler is activated. The zero time of extraction is determined when glacial acetic acid reaches its boiling point (118.1°C) and ends at the specified time for 75 minutes. The extraction results are cooled and filtered using filter paper. The filtrate is distilled while the residue is removed. The filtrate obtained from the extraction was put into a distillation flask to separate the turmeric extract from the solvent. The heater is turned on, and the result is solvent and residue. The residue is dried in an oven at 120°C to remove the residual glacial acetic acid

that is still present in turmeric extract. After that, weighing is done until a constant weight is obtained. Turmeric extract was added to cooking oil before frying food with a concentration of 0.03% [23].

2.2. Frying of food Test.

Food frying is done using the deep frying method by using an electric frying kettle equipped with a temperature and time regulator. The frying process starts by putting fresh cooking oil into the frying boiler as much as 3.5 liters (maximum capacity), then the kettle is heated to a temperature of 180°C. Food is fried until cooked within 10 minutes and made as little as possible stirring to reduce the flow of convection in oil and oxidation reactions due to the aeration process. Analysis The analysis was carried out on fresh oil (oil that has not been used for frying foodstuffs) as a control and on two oil samples, namely cooking oil from frying without added turmeric extract and cooking oil from frying with added turmeric extract. The oil used for repeating the frying is the same oil (it is not replaced, and no additional volume of fresh oil is made). Frying is repeated 10 times with the same temperature and time of frying. Cooking oil samples were taken immediately after the frying process as much as 200 mL, then the oil in the kettle was allowed to cool down and continued with the next frying which is frying first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth [23]. Samples taken for analysis of fatty acid content are samples from the repetition of the first, fifth, and tenth frying.

2.3. Characterization of Cooking Oil.

First, the cooking oil is hydrolyzed into fatty acids, then transformed into a more volatile ester form. The transformation is carried out by methylation to obtain fatty acid methyl esters (FAME); Furthermore, this FAME was analyzed with GC-2010 (Gas Chromatograph) Plus Serial No. gas chromatography. C11804700336 Shimadzu Corp., using standard methods from The Association of Official Analytical Chemists (AOAC). The analysis starts by injecting of solvent as much as 1.0 μ L into the column to obtain a baseline. If the carrier gas flow and heating system are perfect, the peak of the solvent will appear in less than 1 minute. After obtaining the baseline, then proceed by injecting 1 μ L of the standard FAME mixture (Supelco TM 37 Component FAME Mix Catalog No. 47885-U, Bellefonte, PA, USA). When all the peaks are out, the prepared sample is injected as much as 1.0 μ L. Retention times and peak samples were measured for each component.

3. Results and Discussion

In this study, we produced the component of saturated fatty acids in cooking oil namely lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), and stearic acid (C18:0) while acids Unsaturated fats such as elaidic acid (C18:1n9t), oleic acid (C18:1n9c), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), and cis-11,14-eicosadienoic acid (C20:2). The highest saturated fatty acid content in fresh cooking oil (as control) is palmitic acid (C16:0) meanwhile, unsaturated fatty acid is oleic acid (C18:1n9c). The higher content of palmitic acid (C16:0) in cooking oil is the major component of palmitic acid in palm oil [11]. The HPLC analysis has exhibited that cooking oil based on palm oil contains the high saturated fatty acid like palmitic acid 30.88% and unsaturated fatty acids namely oleic acid 35.86%,

linoleic acid 10.41%, stearic acid 3.43%, mistic acid 0.76%; lauric acid 0.18%; linolenic acid 0.18%; cis-11-eicosenoic acid 0.14%; elaidic acid 0.09% and cis-11,14-eicosadienoic acid 0.07% (Table 1).

Table 1. Composition of fatty Acids from recycled frying cooking oil.

Treatment	Fatty Acids	Frying Treatm	Standards based on O'Brien (2003) [24]			
		0	1	5	10	
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.18 ±0.003	0.18 ±0.010	0.19 ±0.015	0.19 ±0.015	0.1-1.0
	Myristic Acid, C14:0	0.76 ±0.010	0.89 ±0.012	0.86 ± 0.036	0.82 ±0.017	0.9-1.5
	Palmitic Acid, C16:0	30.88 ±0.080	34.83 ±0.555	34.00 ±1.167	32.90 ±1.795	41.8-46.8
	Stearic Acid, C18:0	3.43 ±0.035	3.75 ±0.115	3.73 ±0.075	3.68 ±0.367	4.5-5.1
	Unsaturated Fatty Acids					
Untreated	Elaidic Acid, C18:1n9t	0.09 ±0.010	0.09 ±0.006	0.11 ±0.001	0.11 ±0.001	<1
Cooking	Oleic Acid, C18:1n9c	35.86 ±0.145	40.47 ±0.746	40.18 ±0.812	38.52 ±2.807	37.3-40.8
Oil	Linoleic Acid, C18:2n6c	10.41 ±0.02	11.56 ±0.165	11.41 ±0.214	10.61 ±0.735	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ±0.006	0.13 ±0.006	0.13 ±0.006	0.13 ±0.015	-
	Linolenic Acid, C18:3n3	0.18 ±0.005	0.20 ±0.010	0.19 ±0.003	0.17 ±0.006	<1.5
	Cis-11,14-Eicosedienoic Acid, C20:2	0.07 ±0.001	0.09 ±0.021	0.10 ±0.017	0.09 ±0.015	-
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.14 ±0.001	0.10 ±0.006	0.11 ±0.006	0.11 ±0.012	0.1-1.0
	Myristic Acid, C14:0	0.77 ±0.010	0.75 ±0.016	0.73 ±0.021	0.81 ±0.051	0.9-1.5
	Palmitic Acid, C16:0	28.5 ±0.580	29.49 ±0.640	29.25 ±0.957	28.75 ±3.788	41.8-46.8
	Stearic Acid, C18:0	2.96 ±0.050	3.44 ±0.081	3.47 ±0.090	3.61 ±0.182	4.5-5.1
Cooking	Unsaturated Fatty Acids					
Oil + 0.03%	Elaidic Acid, C18:1n9t	0.07 ±0.001	0.09 ±0.006	0.09 ±0.006	0.09 ±0.006	<1
Turmeric	Oleic Acid, C18:1n9c	32.97 ±0.560	33.24 ±1.025	34.05 ±1.100	35.43 ±1.974	37.3-40.8
	Linoleic Acid, C18:2n6c	8.89 ±0.160	9.74 ±0.211	9.94 ±0.495	10.19 ±0.560	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ±0.006	0.11 ±0.006	0.12 ±0.001	0.12 ±0.006	-
	Linolenic Acid, C18:3n3	0.18 ±0.003	0.18 ±0.015	0.18 ±0.017	0.18 ±0.012	<1.5
	Cis-11,14-Eicosedienoic Acid, C20:2	0.06 ±0.001	0.05 ±0.010	0.04 ±0.010	0.06 ±0.010	-

In addition, we added the turmeric extract 0.03% into cooking oil to suppress oxidation reaction shows that the high saturated fatty acid such as palmitic acid 28.5% and unsaturated fatty acids content of oleic acid 32.97%, linoleic acid 8.89%, stearic acid 2.96%, myristic acid 0.77%, linolenic acid 0.18%; lauric acid 0.14%, cis-11-eicosenoic acid 0.14%; elaidic acid 0.07% and cis-11,14-eicosadienoic acid 0.06% (Table 1). The composition of most fatty acids in recycled cooking oil (RCO) is in the range according to Codex standards, except for C8:0, C10:0, C11:0, C11:0, trans C18:1, and polyunsaturated fatty acids (PUFAs), C20:5 [17]. According to Awogbemi [25] reported that palm oil contained 87.7% unsaturated fatty acids and 12.3% saturated fatty acids. Based on these results also show the variation of cooking oil used and type of food fried greatly affect the properties and composition of fatty acids. Overall, in fresh cooking oil was contained 63.16% linoleic acid 20.72%, linolenic acid 10.53%, stearic acid 5.26%, and the smallest component was palmitic acid 0.33% [26].

3.1. Saturated fatty acids.

The saturated fatty acid has been investigated into repeated frying cooking oil based on palm oil, we found the lauric acid, myristic acid, palmitic acid, and stearic acid compounds. Certainly, palm oil as feedstock to produce cooking oil contains 92% saturated fatty acids, including 48% lauric acid, myristic acid 20%, and palmitic acid 9%, with monounsaturated

fatty acids 6% and polyunsaturated fatty acids 1.7% [27]. Figure 1 extracted from Table 1 to observe the range composition and an upward or downward trend in each composition of organic constituents in cooking oil. Figure 1 was recurring frying oil without added turmeric extract showed that before fried the lauric acid of 0.18% (0 times), first frying 0.18% (1 time), fifth frying 0.19% (5 times) and tenth frying 0.19% (10 times). We also compare each organic constituents in cooking oil with results that have been studied from O'brien O'Brien and Richard D. [24] as standard organic constituents in fats and oils. Based on frying treatment, the lauric acid frequency looks to increase: it means that the repetition of a frying treatment can increase the lauric acid compound. Then it is compared with standard 0.1-1.0 shows that do not exceed the specified standard.

Meanwhile, the cooking oil has been added turmeric extract 0.03% contains lauric acid of 0.14% (0 times), 0.10% (1 time), 0.11% (5 times) and 0.11% (10 times). The lauric acid frequency was decreased in the first frying, then increase in the fifth and tenth frying (+0.01). By adding 0.03% turmeric extract can reduce the lauric acid compound, then it is compared with a standard data where it does not exceed the predetermined. The lauric acid is also mostly found in virgin coconut oil (VCO), which consists of 90% medium-chain fatty acids (dominated by lauric acid, which is 45-55% and 10% long-chain fatty acids). If it is compared with oil palm, VCO has a higher of lauric acid content, which is 54.06%, meanwhile in palm oil of 0.10%. Lauric acid plays a role to maintainin maintaining health, among others, functions to kill various types of microbes derived from fatty acids, to increase metabolic activity, and protect the body from disease and accelerate healing [28]. Among saturated fatty acids, lauric acid has been shown to contribute the least to fat accumulation [29]. Likewise, myristic acid has not exceeded the predetermined standard. Myristic acid (C14:0) is a fatty acid that is found in palm kernel oil and coconut oil, which can increase low-density lipoprotein (LDL) cholesterol levels, but it is a minor group in food. It is a long-chain saturated fatty acid (14:0) and also one of the fattiest acids found in milk fat (above 10%) [30].

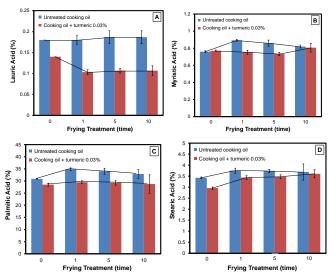


Figure 1. Saturated fatty acids component, (A) Lauric acid, (B) Myristic acid, (C) Palmitic acid and (D) Stearic

Figure 1C the palmitic acid was quite increased along with the repetition of the frying, and it's still lower than the standard which has been specified (41.8-46.8). Palmitic acid is the main fatty acid in palm oil [31]. Palmitic acid is also the main component of saturated fatty acids in food, which contains in vegetable oils 6-10% and can increase LDL cholesterol levels. The presence of palmitic acid in cooking oil can be used as an indicator to detect falsification of fresh palm oil (FPO) with RCO using fatty acid composition analysis (FAC) [17]. Figure 1D also exhibited of the stearic acid compound can be seen that has increased along with the repetition of the frying and compared with a standard in a range of 4.5-5.1 where the saturated fatty acid of stearic acid is still lower from predetermined standards. It is a major component of various types of fat with different amounts, such as animal fat (beef fat) containing 15-20% and only a little in vegetable oil, 4-5% [31]. Stearic acid lowers LDL and HDL cholesterol concentrations when compared with palmitic acid because these fatty acids are quickly converted to monounsaturated fatty acids and oleic acid interesterification of fats rich in palmitic acid or stearic acid does not appear to affect serum lipid fasting and (apo) lipoprotein [32].

Based on saturated fatty acid results and compared with standard fats and oils, we discover that the oil from repeated frying produces saturated fatty acids that do not exceed the specified standard. This means that repeated frying oil based on palm oil is still safe for consumption because of all the saturated fatty acids found within the reasonable standard range, though that can raise cholesterol levels (myristic acid and palmitic acid). In vegetable oils such as palm oil is dominated by more carbon atoms, whereas in animal oils are odd carbon atoms and contain more polyunsaturated fatty acids (PUFA) [33]. Cooking oil with high saturated fatty acid content will affect the stability of food items that are fried during frying [34,35]. In addition, the high content of fatty acids causes oil to be easily damaged during cooking processing because the oil will be heated continuously at high temperatures and direct contact with oxygen in the surrounding air, which facilitates the oxidation reaction to the oil. According to Baba-Moussa et al. [12], an increase in temperature followed by a long heating time indicates that an increase in the fatty acid component forms triglycerides. The result of triglyceride hydrolysis will produce saturated and unsaturated fatty acids based on the presence or absence of carbon chain double bonds in the molecule.

3.2. Unsaturated fatty acids.

The presence of organic constituents in repeated frying oil have has been examined that it is containing contains elaidic acid, oleic acid, linoleic acid, cis-11-eicosenoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. Based on Figure 2A the content of untreated cooking oil from elaidic acid showed that 0.09% (0 times), 0.09% (1 time), 0.11% (5 times) and 0.11% (10 times), while the frying oil added 0.03% turmeric extract showed the treatment before frying 0.07% (0 times), 0.09% (1 time), 0.09% (5 times) and 0.09% (10 times). If seen from the frequency of elaidic acid (Figure 2A) that repeated frying can increase the level of elaidic acid and compare with standard <1 that it does not exceed the specified standard. This is because trans fatty acids (TFA) in elaidic acid are unsaturated fatty acids with at least one double bond in the form of trans configuration that can occur naturally from ruminants-based meat and dairy products, or artificially through partial hydrogenation of vegetable oils in industry food processing [36]. Sartika also reported that trans fatty acids (elaidate) were only formed after the second repetition of deep-frying, and their levels increased with the repeated use of oil. Based on the initial formation of trans fatty acids, the frying process should be done https://biointerfaceresearch.com/

on medium heat (<200°C)₂ and the cooking oil used should not exceed 2 (two) repetitions. Not so in the oleic acid compound (Figure 2B) shows a tendency to vary, if it is compared with the standard of 37.3-40.8. Whereas the recycled frying oil added with 0.03% turmeric extract showed an increase along with the repetition of the frying and when compared with the standard 37.3-40.8. These results indicate that oleic acid is still lower than the standard value.

Furthermore, the content of linoleic acid (Figure 2C) in untreated cooking oil showed the same conditions varying when compared with the standard of 9.1-11.0. One that met the standard was the treatment before the tenth frying and frying, while those that do not meet the standards in the first and fifth frying treatment. Then, it compared with frying cooking oil added 0.03% turmeric extract showed an increase along with the repetition of the frying and compared with the standard the first, fifth, and tenth frying have met the standards. Meanwhile, which did not meet the standards in the treatment before the addition of turmeric extract such as the first and fifth frying. From tThis result showed that repeated frying ean-could increase the levels of linoleic acid in the oil from repeated frying by adding 0.03% turmeric extract. It is due to the conjugation of linolenic acid isomer refers to a group of positions and geometrical isomers of omega-3-α-linolenic acid essential acids (cis-9, cis-12, cis-15 C18: 3; ALA) [37,38].

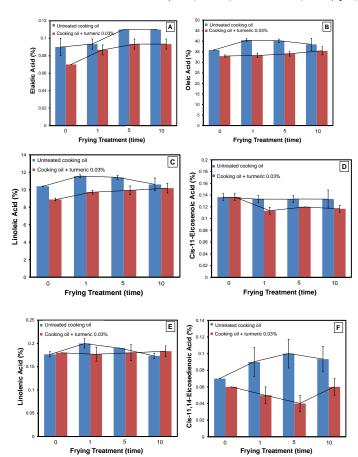


Figure 2. Unsaturated fatty acids component (A) elaidic acid, (B) oleic acid, (C) linoleic acid, (D) cis-11-eicosenoic acid, (E) linolenic acid, and (F) cis-11,14-eicosadienoic acid.

The content of cis-11-eicosenoic acid (Figure 2D) in untreated cooking oil and added 0.03% turmeric extract has had decreased levels caused by slow oxidation reactions against cis-11-eicosenoic acid. The frequency of linolenic acid (Figure 2E) in unprocessed cooking oil shows a variable trend. At the beginning of the frying (1 time), there was an increase compared to those not treated, but over time the frying duration decreases. In otherwise, by adding turmeric extract shows a quite static level before frying to the tenth repetition treatment. It shows the that turmeric extract can suppress the occurrence oxidation reaction. Meanwhile, Figure 2F depicts cis-11-14-eicosadienoic acid has increased in untreated cooking oil, while the unique by adding turmeric extract dramatically decrease levels. It is concluded cooking oil without treatment has shown increase unsaturated acid levels. The performance of turmeric extract has quite demonstrated efficiency to suppressin suppressing chemical reactions during frying treatment [39]. In addition, turmeric extract can function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during repeated frying. This will affect the composition of fatty acids contained in cooking oil. According to Kim and Clifton [40] showed that curcumin (diferuloylmethane) is the main secondary metabolite in turmeric extract, which is beneficial to the human body as antioxidant and anti-inflammatory properties. Curcumin, as a bioactive component, has been shown to be a broad biological action. To date, it has been reported that natural coloured extracts are isolated from turmeric by various methods such as maceration, digestion, microwave, and infusion [21]. Turmeric varieties studied by Tanvir et al. [18] is a useful source of natural antioxidants and can provide protection against free radical damage. Curcumin can be used as a food additive and is also good for use as conventional medicine [41].

4. Conclusions

This study reports the chemical composition of cooking oil consisting of saturated fatty acids, such as lauric acid, myristic acid, palmitic acid, and stearic acid. Whereas, the unsaturated fatty acids of elaidic acid, oleic acid, linoleic acid, cis-11-eicosedienoic acid, linolenic acid, and cis-11,14-eicosedienoic acid. The highest saturated fatty acid levels in cooking oil before frying, are palmitic acid of 30.88%, whereas unsaturated fatty acids, namely oleic acid of 35.86%. The highest saturated fatty acid content in the oil which has added turmeric extract before frying is palmitic acid of 28.5%, while unsaturated fatty acids like oleic acid of 32.97%. Turmeric extract added to cooking oil can function as an anticosidan so that it can inhibit thermal oxidation in cooking oil during repeated frying. The treatment of repeated frying affects the fatty acids contained in repeated cooking oils, both saturated fatty acids and unsaturated fatty acids.

Funding

This research received no external funding.

Acknowledgments

We are grateful for the laboratory facilities from the Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, in conducting this research.

Commented [A3]: Incomplete. Please clarify

Conflicts of Interest

The authors declare no conflict of interest.

References

- Prasetyo, J. Studi Pemanfaatan Minyak Jelantah Sebagai Bahan Baku Pembuatan Biodiesel. *Jurnal Ilmiah Teknik Kimia* 2018, 2, 45–54, http://dx.doi.org/10.32493/jitk.v2i2.1679.
- Gashaw, A.; Getasetegn, M. Chemistry and Health Impacts of Trans Fatty Acids. Journal of Chemical Technology & Metallurgy 2018, 53, 159–169.
- Rule, D.C.; Liebman, M.; Liang, Y. Bin Impact of different dietary fatty acids on plasma and liver lipids is influenced by dietary cholesterol in rats. *The Journal of Nutritional Biochemistry* 1996, 7, 142–149, https://doi.org/10.1016/0955-2863(95)00192-1.
- Falade, A.O.; Oboh, G.; Okoh, A.I. Potential health implications of the consumption of thermally-oxidized cooking oils—a review. *Polish journal of food and nutrition sciences* 2017, 67, 95–106, https://doi.org/10.1515/pjfns-2016-0028.
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry–A review. Food bioscience 2015, 10, 26–41, https://doi.org/10.1016/j.fbio.2015.01.003.
- Dewi, T.I.; Twilana, M. Bulk Cooking Oil Quality Improvement Using Adsorbent Activated Bentonite. *UNESA Journal of Chemistry* 2012, 1, 47–53.
- Sartika, R.A.D. Pengaruh suhu dan lama proses menggoreng (deep frying) terhadap pembentukan asam lemak trans. Makara Journal of Science 2009, 13, 23–28, https://doi/org/10.7454/mss.v13i1.354.
- Oluwaniyi, O.O.; Dosumu, O.O.; Awolola, G.V. Effect of cooking method on the proximate, amino acid and fatty acid compositions of Clarias gariepinus and Oreochromis niloticus. *Journal of the Turkish Chemical Society Section A: Chemistry* 2017, 4, 115–132, https://doi.org/10.18596/jotcsa.53143.
- Weber, J.; Bochi, V.C.; Ribeiro, C.P.; Victório, A. de M.; Emanuelli, T. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. *Food Chemistry* 2008, 106, 140–146, https://doi.org/10.1016/j.foodchem.2007.05.052.
- 10. Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. *Comprehensive reviews in food science and food safety* **2006**, *5*, 169–186, https://doi.org/10.1111/j.1541-4337.2006.00009.x.
- Akhtar, S.; Tanveer, M.; Ismail, A.; Ismail, T.; Hussain, M. Safety evaluation of oil samples collected from different food points of multan city of Pakistan. *International Journal of Food and Allied Sciences* 2018, 3, 43–48, https://doi.org/10.21620/ijfaas.2017243-48.
- Baba-Moussa, F.; Zynzendorf, Y.N.; Bonou, J.; Gbénou, J.; Moudachirou, M.; Kotchoni, S.O.; Toukourou, F.; Baba-Moussa, L. Kit reliability for controlling the quality of oils in food frying. *Journal of Microbiology Biotechnology and Food Sciences* 2020, 9, 121–134.
- Abriana, A.; Mahendradatta, M.; Djide, N.; Zainal, Z. Analysis of Trans Fatty Acid Content and Viscosity
 of the Repeteadly Used Frying Oil. *International Journal of Agriculture System* 2013, 1, 71–79.
- Abiona, O.O.; Awojide, S.H.; Anifowoshe, A.J.; Babalola, O.B. Comparative study on effect of frying process on the fatty acid profile of vegetable oil and palm oil. *E-International Scientific Research Journal* 2011, 3, 210–219.
- Kala, A.L.A. Cis-, trans-and saturated fatty acids in selected hydrogenated and refined vegetable oils in the Indian market. *Journal of the American Oil Chemists' Society* 2012, 89, 1813–1821, https://doi.org/10.1007/s11746-012-2086-y.
- Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The Effect of Coconut Oil Consumption on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Clinical Trials. *Circulation* 2020, 141, 803–814, https://doi.org/10.1161/CIRCULATIONAHA.119.043052.
- Lim, S.Y.; Abdul Mutalib, M.S.; Khaza'ai, H.; Chang, S.K. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. *International Journal of Food Properties* 2018, 21, 2428–2451, https://doi.org/10.1080/10942912.2018.1522332.
- Tanvir, E.M.; Hossen, M.; Hossain, M.; Afroz, R.; Gan, S.H.; Khalil, M.; Karim, N. Antioxidant properties
 of popular turmeric (Curcuma longa) varieties from Bangladesh. *Journal of Food Quality* 2017, 2017, 1–8,
 https://doi.org/10.1155/2017/8471785.
- Shankar, S.; Srivastava, R.K. Curcumin: structure, biology and clinical applications. In: Nutrition, diet and cancer. Springer, 2012; pp. 413–457, https://doi.org/10.1007/978-94-007-2923-0_17.
- Kim, J.H.; Yang, H.J.; Kim, Y.-J.; Park, S.; Lee, O.; Kim, K.S.; Kim, M.J. Korean turmeric is effective for dyslipidemia in human intervention study. *Journal of Ethnic Foods* 2016, 3, 213–221, https://doi.org/10.1016/j.jef.2016.08.006.
- Nabati, M.; Mahkam, M.; Heidari, H. Isolation and characterization of curcumin from powdered rhizomes
 of turmeric plant marketed in Maragheh city of Iran with soxhlet technique. *Quarterly Journal of Iranian Chemical Communication* 2014, 2, 236–243.
- Palve, Y.P.; Nayak, P.L. Curcumin: a wonder anti-cancer drug. International Journal of Pharmacy and Biomedical Sciences 2012, 3, 60–69.

Commented [A4]: Please add at least 10-15 references from the last 2 years (2019-2020).

- Abriana, A.; Johannes, E. Turmeric extract as an antioxidant in repeatedly used cooking oil. *International Journal of Scientific & Technology Research* 2014, 3, 347–350.
- 24. O'brien, R.D. Fats and oils: formulating and processing for applications. CRC press, 2008.
- Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. *International Journal of Low-Carbon Technologies* 2019, 14, 417–425, https://doi.org/10.1093/ijlct/ctz038.
- Bazina, N.; He, J. Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. *Journal of food science and technology* 2018, 55, 3085–3092, https://doi.org/10.1007/s13197-018-3232-9.
- Kwon, S.Y.; Massey, K.; Watson, M.A.; Hussain, T.; Volpe, G.; Buckley, C.D.; Nicolaou, A.; Badenhorst, P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. *Life science alliance* 2020, 3, 1–17, https://doi.org/10.26508/lsa.201900356.
- Suryani, S.; Sariani, S.; Earnestly, F.; Marganof, M.; Rahmawati, R.; Sevindrajuta, S.; Mahlia, T.M.I.; Fudholi, A. A Comparative Study of Virgin Coconut Oil, Coconut Oil and Palm Oil in Terms of Their Active Ingredients. *Processes* 2020, 8, 402–413, https://doi.org/10.3390/pr8040402.
- Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. *Journal of the American Oil Chemists' Society* 2015, 92, 1–15, https://doi.org/10.1007/s11746-014-2562-7.
- 30. Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the components from goat's milk, recent advances for functional dairy products development and its implications on human health. *Journal of Functional Foods* **2019**, *52*, 243–257, https://doi.org/10.1016/j.jff.2018.11.017.
- 31. Taufik, M.; Lioe, H.N.; Yuliana, N.D. Evaluation of Major Fatty Acids Determination in Palm Oil by Gas Chromatography-Flame Ionization Detection. *Agritech* **2016**, *36*, 308–316, https://doi.org/10.22146/agritech.16603.
- van Rooijen, M.A.; Mensink, R.P. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers-A Systematic Review. *Nutrients* 2020, 12, 615–629, https://doi.org/10.3390/nu12030615.
- Petrović, M.; Kezić, N.; Bolanča, V. Optimization of the GC method for routine analysis of the fatty acid profile in several food samples. Food Chemistry 2010, 122, 285–291, https://doi.org/10.1016/j.foodchem.2010.02.018.
- Alireza, S.; Tan, C.P.; Hamed, M.; Che Man, Y.B. Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. *International food research journal* 2010, 17, 295– 302
- Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. Food and chemical toxicology 2010, 48, 2972–2979, https://doi.org/10.1016/j.fct.2010.07.036
- 36. Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and cardiovascular disease. *New England Journal of Medicine* **2006**, *354*, 1601–1613, https://dx.doi.org/10.12669%2Fpjms.301.4525.
- Taha, A.Y. Linoleic acid-good or bad for the brain? NPJ science of food 2020, 4, 1-6, https://doi.org/10.1038/s41538-019-0061-9
- Białek, M.; Czauderna, M.; Białek, A. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. *Journal of Animal and Feed Sciences* 2017, 26, 3–17, https://doi.org/10.22358/jafs/68862/2017.
- 39. Rebiai, A.; Belfar, M.L.; Mesbahi, M.A.; Nani, S.; Tliba, A.; Amara, D.G.; Chouikh, A. Fatty acid composition of Algerian propolis. *Journal of Fundamental and Applied Sciences* **2017**, *9*, 1656–1671.
- Kim, Y.; Clifton, P. Curcumin, cardiometabolic health and dementia. *International journal of environmental research and public health* 2018, 15, https://doi.org/10.3390/ijerph15102093.
- Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. *Nutrition journal* 2017, 16, 68–78, https://doi.org/10.1186/s12937-017-0293-y.

Article

Volume 10, Issue ..., 2020, ...- ...

https://doi.org/10.33263/BRIAC00.000000

Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a Potential Antioxidant Agent

Andi Abriana ^{1,*}, Hamsina Hamsina ², Suriana Laga ¹, Maulidiyah Maulidiyah ^{3,*}

- Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi – Indonesia.
- Department of Chemical Engineering, Faculty of Engineering, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi – Indonesia.
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Universitas Halu Oleo, Kota Kendari 93231 Southeast Sulawesi – Indonesia
- * Correspondence: andi.abriana510@gmail.com (A.A.); maulid06@yahoo.com (M.M.);

Scopus Author ID 56648049800

Received: date; Revised: date; Accepted: date; Published: date

Abstract: The objective of this study to compare the fatty acids composition in cooking oil from repeated frying without added turmeric extract and added. The research design is testing the composition of fatty acids in repeated cooking oil using two types of treatment, namely cooking oil from frying without adding turmeric extract and cooking oil from frying with 0.03% turmeric extract added with 10 times frying repeat because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The analysis of fatty acids was conducted using gas chromatography. Based on these results that the fatty acid components were produced of saturated fatty acids, namely lauric acid, myristic acid, palmitic acid, and stearic acid, whereas unsaturated fatty acids also detected such as elaidic acid, oleic acid, linoleic acid, cis-11-eicosadienoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. The highest saturated fatty acid content in cooking oil before frying is palmitic acid (30.88%), whereas unsaturated fatty acid was oleic acid (35.86%). The highest content of saturated fatty acids in cooking oil has been added turmeric extract before frying is palmitic acid (28.5%), while unsaturated fatty acid of oleic acid was 32.97%.

Keywords: cooking oil; fatty acid; curcumin; chemical; content.

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cooking oil is one of the foodstuffs consumed by the majority of Indonesia's population with consumption levels reaching more than 2.5 million tons per year, or more than 12 kg/person/year, and also the dominant foodstuffs used by the community to process of feedstock into food made from palm oil [1]. As a food ingredient, palm oil has several advantages over other cooking oils, which contain carotene as an anti-cancer and tocopherol as a source of vitamin E3. In addition, palm oil can be a non-cholesterol cooking oil (low cholesterol levels) and contains fatty acids, which are the main components of fats consisting of saturated and unsaturated fatty acids [2,3]. The main components of saturated fatty acids in palm cooking oil are palmitic acid (C-16), oleic acid (C-18: monounsaturated), and linoleic acid (C-18: polyunsaturated), while the other components are in amounts, few are myristic acid (C-14) and stearic acid (C-18) [4]. Palm oil has a fatty acid, composition, which is different from other cooking oils because it contains a composition of saturated acids that is

Deleted[Alexandra Burdusel]: open

Deleted[Alexandra Burdusel]: s

almost the same as unsaturated fatty acids, namely 50% saturated fatty acids and 50% unsaturated fatty acids [5].

In the community, cooking oil is widely used in food processing because it can function as a medium for conveying heat, adding a savory taste, adding nutritional value and calories in food, texture, and appearance of food becomes more attractive, and dry surface [6,7]. In addition, cooking oil can also be used for various food processing processes and is used in almost all types of food preparation such as frying, sautéing, grilling, baking, curling, rolling, and cooking by means of extrusion [8]. Frying is one way to cook raw food into cooked food using cooking oil. Deep frying processing requires a large amount of cooking oil in order to submerge entirely of food ingredients in cooking oil [5]. This condition encourages to use cooking oil repeatedly. The use of cooking oil the longer and more often (repeatedly), the quality will decrease due to oxidation fatty acid. Cooking oil has been oxidized can cause poisoning and other negative effects on human health, but the tendency is that people still often use cooking oil repeatedly for economic purposes [9,10]. In addition to economic factors, it is also due to an increase in prices of basic necessities due to government policies to raise fuel prices, thus encouraging people both industry and households to use cooking oil repeatedly. In developing countries, there are still many repeated frying using cooking oil repeatedly with economic goals. Cooking oil has become an inseparable part of the modern food processing system so that its safety is very important for health institutions throughout the world to provide health insurance among the public in consuming cooking oil [11].

The quality of cooking oil is determined by its constituent fatty acid components, which are classes of saturated or unsaturated fatty acids. Saturated fatty acids have adverse effects on health; otherwise unsaturated fatty acids are a good source of nutrition for health. Saturated fatty acids have the potential to increase blood cholesterol, while unsaturated fatty acids can reduce blood cholesterol. In the cooking process, the chemical composition of cooking oil used has contained frying foodstuffs of unsaturated fatty acids and other byproducts that can reduce the quality of cooking oil so that it becomes toxic and often carcinogenic [12]. The composition of fatty acids in cooking oil changes physicochemical properties due to the thermal process during frying. The physicochemical properties of cooking oil used repeatedly changed at a frying temperature of 180°C and a frying time of 10 minutes by repeating the frying five times, namely the formation of trans fatty acids (chemical properties) and increased viscosity (physical properties) [13]. Some in vivo research results suggest that consumption of thermally oxidized cooking oil may be unhealthy because it can affect the lipid profile, namely an increase in low-density lipoprotein (LDL), a decrease in high-density lipoprotein (HDL) and an increase in cholesterol levels, a hematological system, white blood cell counts. (WBC), neutrophil and lymphocyte counts, obesity, coronary heart disease (CHD) and cardiovascular disease, increased blood pressure, atherosclerosis, kidney function, and can induce lipid peroxidation and oxidative stress that have been linked to the pathogenesis of various degenerative diseases [14,15]. Consumption of coconut oil produces LDL cholesterol, which is much higher than non-tropical oil [16].

Based on previous studies, the frying food with a deep frying method using a pan for 15 minutes. The results obtained are that the sample contains more unsaturated fatty acids than saturated, ie, palmitic acid is the main saturated fatty acid; oleic acid is the main unsaturated fatty acid with linoleic acid, linolenic acid, and palmitoleic acid in varying amounts [8]. Lim et al. has detected the falsification of fresh palm olein (FPO) with RCO

Deleted[Alexandra Burdusel]: u

Deleted[Alexandra Burdusel]: a

Deleted[Alexandra Burdusel]:

Deleted[Alexandra Burdusel]: a

using fatty acid compositions and Fourier-transform infrared (FTIR) spectral analysis combined with chemometrics [17]. The FPO is added to the electric frying pan (DFT-6000) with a maximum capacity (5.5 L) and heated for about 20 minutes to reach a temperature of 180°C. The results show a tendency to decrease PUFAs, which is consistent with the increasing magnitude of changes in the level of counterfeiting, and this might be a good indicator to detect the occurrence of FPO forgery with RCO. Of the two results of this study, more specific testing of cooking oil without using additional elements.

Especially, the objective in this study is applied cooking oil with additional elements, namely turmeric extract obtained from the turmeric plant (Curcuma longa) as one of the sources of natural antioxidants that contain curcumin. Turmeric is a useful source of natural antioxidants agents and can provide significant protection against damage to cooking oil due to free radicals and can also prevent fat peroxidation [18,19]. Curcumin (C₂₁H₂₀O₆) in turmeric is an active component, hydrophobic yellow-orange polyphenols derived from turmeric rhizomes, and has been used in food as a stabilizer in jelly or as a natural dye in cheese and as an additive in traditional medicine [20–22]. According to Abriana and Johannes [23] showed that the addition of turmeric extract into cooking oil could reduce the formation of trans fatty acids and extend the time of use of cooking oil; and based on the results of the analysis of trans fatty acid levels, the best treatment is the addition of turmeric extract at a concentration of 0.03%. The objective to be achieved in this research is to compare the composition of fatty acids in cooking oil from repeated frying without added turmeric extract with cooking oil that has been added turmeric extract. The contribution of this research is more towards food safety and health for consuming fried food.

2. Materials and Methods

This study aims to test the composition of fatty acids in cooking oil from repeated frying using an experimental laboratory test with 2 (two) types of treatment, namely cooking oil from frying without adding turmeric extract and frying oil from frying with added turmeric extract with 10 repetitions of frying because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The main focus of research is to uncover the phenomenon of cooking oil due to repeated frying by analyzing fatty acid levels using gas chromatography.

2.1. Preparation of turmeric extract.

The use of turmeric extract is a consideration of its function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during frying because it contains curcumin, which is a yellow active component and can be extracted from turmeric rhizome. Turmeric is first selected and cleaned, then cut into small pieces or thinly. Then the turmeric is weighed as much as 100 grams for preparation of extraction. 100 grams of turmeric is dried in an oven at 100°C for 1 hour. After drying, then put into a three-neck flask plus 98% glacial acetic acid solvent that has been diluted with a ratio of 1:1 with a total volume of 300 mL solvent. The heater is turned on, and the return cooler is activated. The zero time of extraction is determined when glacial acetic acid reaches its boiling point (118.1°C) and ends at the specified time for 75 minutes. The extraction results are cooled and filtered using filter paper. The filtrate is distilled while the residue is removed. The filtrate obtained from the extraction was put into a distillation flask to separate the turmeric extract from the solvent. The heater is

Deleted[Alexandra Burdusel]: can

Deleted[Alexandra Burdusel]: laboratory experimental

turned on, and the result is solvent and residue. The residue is dried in an oven at 120°C to remove the residual glacial acetic acid that is still present in turmeric extract. After that, weighing is done until a constant weight is obtained. Turmeric extract was added to cooking oil before frying food with a concentration of 0.03% [23].

2.2. Frying of food Test.

Food frying is done using the deep frying method by using an electric frying kettle equipped with a temperature and time regulator. The frying process starts by putting fresh cooking oil into the frying boiler as much as 3.5 liters (maximum capacity), then the kettle is heated to a temperature of 180°C. Food is fried until cooked within 10 minutes and made as little as possible stirring to reduce the flow of convection in oil and oxidation reactions due to the aeration process. The analysis was carried out on fresh oil (oil that has not been used for frying foodstuffs) as control and on two oil samples, namely cooking oil from frying without added turmeric extract and cooking oil from frying with added turmeric extract. The oil used for repeating the frying is the same oil (it is not replaced, and no additional volume of fresh oil is made). Frying is repeated 10 times with the same temperature and time of frying. Cooking oil samples were taken immediately after the frying process as much as 200 mL, then the oil in the kettle was allowed to cool down and continued with the next frying which is frying first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth [23]. Samples taken for analysis of fatty acid content are samples from the repetition of the first, fifth, and tenth frying.

2.3. Characterization of Cooking Oil.

First, the cooking oil is hydrolyzed into fatty acids, then transformed into a more volatile ester form. The transformation is carried out by methylation to obtain fatty acid methyl esters (FAME); Furthermore, this FAME was analyzed with GC-2010 (Gas Chromatograph) Plus Serial No. gas chromatography. C11804700336 Shimadzu Corp., using standard methods from The Association of Official Analytical Chemists (AOAC). The analysis starts by injecting of solvent as much as 1.0 μ L into the column to obtain a baseline. If the carrier gas flow and heating system are perfect, the peak of the solvent will appear in less than 1 minute. After obtaining the baseline, then proceed by injecting 1 μ L of the standard FAME mixture (Supelco TM 37 Component FAME Mix Catalog No. 47885-U, Bellefonte, PA, USA). When all the peaks are out, the prepared sample is injected as much as 1.0 μ L. Retention times and peak samples were measured for each component.

3. Results and Discussion

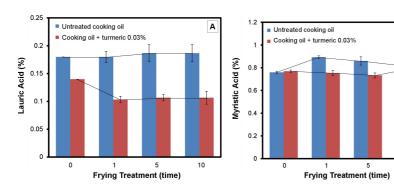
In this study, we produced the component of saturated fatty acids in cooking oil namely lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), and stearic acid (C18:0) while acids Unsaturated fats such as elaidic acid (C18:1n9t), oleic acid (C18:1n9c), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), and cis-11,14-eicosadienoic acid (C20:2). The highest saturated fatty acid content in fresh cooking oil (as control) is palmitic acid (C16:0) meanwhile, unsaturated fatty acid is oleic acid (C18:1n9c). The higher content of palmitic acid (C16:0) in cooking oil is the major component of palmitic acid in palm oil [11]. The HPLC analysis has exhibited that cooking oil based on palm oil

Deleted[Alexandra Burdusel]: Analysis

Deleted[Alexandra Burdusel]: a

contains the high saturated fatty acid like palmitic acid 30.88% and unsaturated fatty acids namely oleic acid 35.86%, linoleic acid 10.41%, stearic acid 3.43%, mistic acid 0.76%; lauric acid 0.18%; linolenic acid 0.18%; cis-11-eicosenoic acid 0.14%; elaidic acid 0.09% and cis-11,14-eicosadienoic acid 0.07% (Table 1).

Table 1. Composition of fatty Acids from recycled frying cooking oil.


Treatment	Fatty Acids	Frying Treatm	Standards based on O'Brien (2003) [24]			
		0	1	5	10	
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.18 ± 0.003	0.18 ± 0.010	0.19 ± 0.015	0.19 ± 0.015	0.1-1.0
	Myristic Acid, C14:0	0.76 ± 0.010	0.89 ± 0.012	0.86 ± 0.036	0.82 ± 0.017	0.9-1.5
	Palmitic Acid, C16:0	30.88 ± 0.080	34.83 ± 0.555	34.00 ± 1.167	32.90 ± 1.795	41.8-46.8
	Stearic Acid, C18:0	3.43 ±0.035	3.75 ±0.115	3.73 ± 0.075	3.68 ±0.367	4.5-5.1
Untreated	Unsaturated Fatty Acids					
Cooking	Elaidic Acid, C18:1n9t	0.09 ± 0.010	0.09 ±0.006	0.11 ±0.001	0.11 ±0.001	<1
Oil	Oleic Acid, C18:1n9c	35.86 ±0.145	40.47 ±0.746	40.18 ±0.812	38.52 ±2.807	37.3-40.8
	Linoleic Acid, C18:2n6c	10.41 ±0.02	11.56 ±0.165	11.41 ±0.214	10.61 ±0.735	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ±0.006	0.13 ±0.006	0.13 ±0.006	0.13 ±0.015	-
	Linolenic Acid, C18:3n3	0.18 ± 0.005	0.20 ±0.010	0.19 ±0.003	0.17 ±0.006	<1.5
	Cis-11,14-Eicosedienoic Acid, C20:2	0.07 ± 0.001	0.09 ±0.021	0.10 ±0.017	0.09 ±0.015	-
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.14 ± 0.001	0.10 ± 0.006	0.11 ± 0.006	0.11 ±0.012	0.1-1.0
	Myristic Acid, C14:0	0.77 ± 0.010	0.75 ±0.016	0.73 ± 0.021	0.81 ± 0.051	0.9-1.5
	Palmitic Acid, C16:0	28.5 ± 0.580	29.49 ± 0.640	29.25 ± 0.957	28.75 ±3.788	41.8-46.8
	Stearic Acid, C18:0	2.96 ± 0.050	3.44 ± 0.081	3.47 ± 0.090	3.61 ±0.182	4.5-5.1
Cooking Oil +	Unsaturated Fatty Acids					
0.03%	Elaidic Acid, C18:1n9t	0.07 ± 0.001	0.09 ±0.006	0.09 ± 0.006	0.09 ±0.006	<1
Turmeric	Oleic Acid, C18:1n9c	32.97 ±0.560	33.24 ±1.025	34.05 ±1.100	35.43 ±1.974	37.3-40.8
	Linoleic Acid, C18:2n6c	8.89 ± 0.160	9.74 ±0.211	9.94 ± 0.495	10.19 ± 0.560	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ±0.006	0.11 ±0.006	0.12 ±0.001	0.12 ±0.006	-
	Linolenic Acid, C18:3n3	0.18 ± 0.003	0.18 ± 0.015	0.18 ± 0.017	0.18 ± 0.012	<1.5
	Cis-11,14-Eicosedienoic Acid, C20:2	0.06 ± 0.001	0.05 ±0.010	0.04 ±0.010	0.06 ±0.010	-

In addition, we added the turmeric extract 0.03% into cooking oil to suppress oxidation reaction shows that the high saturated fatty acid such as palmitic acid 28.5% and unsaturated fatty acids content of oleic acid 32.97%, linoleic acid 8.89%, stearic acid 2.96%, myristic acid 0.77%, linolenic acid 0.18%; lauric acid 0.14%, cis-11-eicosenoic acid 0.14%; elaidic acid 0.07% and cis-11,14-eicosadienoic acid 0.06% (Table 1). The composition of most fatty acids in recycled cooking oil (RCO) is in the range according to Codex standards, except for C8:0, C10:0, C11:0, C11:0, trans C18:1, and polyunsaturated fatty acids (PUFAs), C20:5 [17]. According to Awogbemi [25] reported that palm oil contained 87.7% unsaturated fatty acids and 12.3% saturated fatty acids. Based on these results also show the variation of cooking oil used and type of food fried greatly affect the properties and composition of fatty acids. Overall, in fresh cooking oil was contained 63.16% linoleic acid 20.72%, linolenic acid 10.53%, stearic acid 5.26%, and the smallest component was palmitic acid 0.33% [26].

3.1. Saturated fatty acids.

The saturated fatty acid has been investigated into repeated frying cooking oil based on palm oil; we found the lauric acid, myristic acid, palmitic acid, and stearic acid compounds. Certainly, palm oil as feedstock to produce cooking oil contains 92% saturated fatty acids, including 48% lauric acid, myristic acid 20%, and palmitic acid 9%, with monounsaturated fatty acids 6% and polyunsaturated fatty acids 1.7% [27]. Figure 1 extracted from Table 1 to observe the range composition and an upward or downward trend in each composition of organic constituents in cooking oil. Figure 1 was recurring frying oil without added turmeric extract showed that before fried the lauric acid of 0.18% (0 times), first frying 0.18% (1 time), fifth frying 0.19% (5 times) and tenth frying 0.19% (10 times). We also compare each organic constituents in cooking oil with results that have been studied from O'Brien and Richard D. [24] as standard organic constituents in fats and oils. Based on frying treatment, the lauric acid frequency looks to increase; it means that the repetition of a frying treatment can increase the lauric acid compound. Then it is compared with standard 0.1-1.0 shows that do not exceed the specified standard.

Meanwhile, the cooking oil has been added turmeric extract 0.03% contains lauric acid of 0.14% (0 times), 0.10% (1 time), 0.11% (5 times) and 0.11% (10 times). The lauric acid frequency was decreased in the first frying, then increase in the fifth and tenth frying (+0.01). By adding 0.03% turmeric extract can reduce the lauric acid compound, then it is compared with a standard data where it does not exceed the predetermined. The lauric acid is also mostly found in virgin coconut oil (VCO), which consists of 90% medium-chain fatty acids (dominated by lauric acid, which is 45-55% and 10% long-chain fatty acids). If it is compared with oil palm, VCO has a higher of lauric acid content, which is 54.06%, meanwhile in palm oil of 0.10%. Lauric acid plays a role in maintaining health, among others, functions to kill various types of microbes derived from fatty acids, to increase metabolic activity, and protect the body from disease and accelerate healing [28]. Among saturated fatty acids, lauric acid has been shown to contribute the least to fat accumulation [29]. Likewise, myristic acid has not exceeded the predetermined standard. Myristic acid (C14:0) is a fatty acid that is found in palm kernel oil and coconut oil, which can increase low-density lipoprotein (LDL) cholesterol levels, but it is a minor group in food. It is a long-chain saturated fatty acid (14:0) and also one of the fattiest acids found in milk fat (above 10%) [30].

Deleted[Alexandra Burdusel]: ,

Deleted[Alexandra Burdusel]: O'brien

Deleted[Alexandra Burdusel]: ,

Deleted[Alexandra Burdusel]: to maintain

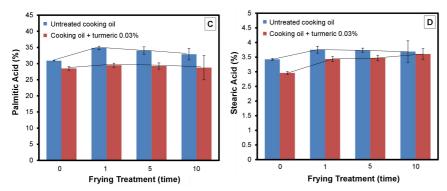


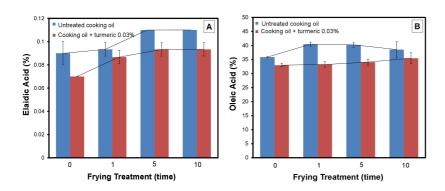
Figure 1. Saturated fatty acids component, (A) Lauric acid, (B) Myristic acid, (C) Palmitic acid and (D) Stearic acid.

Figure 1C the palmitic acid was quite increased along with the repetition of the frying, and it's still lower than the standard which has been specified (41.8-46.8). Palmitic acid is the main fatty acid in palm oil [31]. Palmitic acid is also the main component of saturated fatty acids in food, which contains vegetable oils 6-10% and can increase LDL cholesterol levels. The presence of palmitic acid in cooking oil can be used as an indicator to detect falsification of fresh palm oil (FPO) with RCO using fatty acid composition analysis (FAC) [17]. Figure 1D also exhibited of the stearic acid compound can be seen that has increased along with the repetition of the frying and compared with a standard in a range of 4.5-5.1 where the saturated fatty acid of stearic acid is still lower from predetermined standards. It is a major component of various types of fat with different amounts, such as animal fat (beef fat) containing 15-20% and only a little in vegetable oil, 4-5% [31]. Stearic acid lowers LDL and HDL cholesterol concentrations when compared with palmitic acid because these fatty acids are quickly converted to monounsaturated fatty acids and oleic acid interesterification of fats rich in palmitic acid or stearic acid does not appear to affect serum lipid fasting and (apo) lipoprotein [32].

Based on saturated fatty acid results and compared with standard fats and oils, we discover that the oil from repeated frying produces saturated fatty acids that do not exceed the specified standard. This means that repeated frying oil based on palm oil is still safe for consumption because of all the saturated fatty acids found within the reasonable standard range, though that can raise cholesterol levels (myristic acid and palmitic acid). In vegetable oils such as palm oil is dominated by more carbon atoms, whereas in animal oils are odd carbon atoms and contain more polyunsaturated fatty acids (PUFA) [33]. Cooking oil with high saturated fatty acid content will affect the stability of food items that are fried during frying [34,35]. In addition, the high content of fatty acids causes oil to be easily damaged during cooking processing because the oil will be heated continuously at high temperatures and direct contact with oxygen in the surrounding air, which facilitates the oxidation reaction to the oil. According to Baba-Moussa et al. [12], an increase in temperature followed by a long heating time indicates that an increase in the fatty acid component forms triglycerides. The result of triglyceride hydrolysis will produce saturated and unsaturated fatty acids based on the presence or absence of carbon chain double bonds in the molecule.

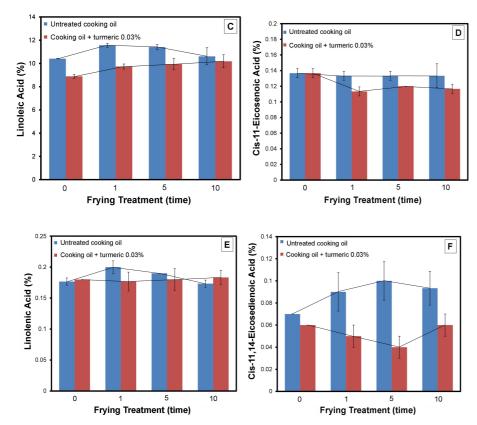
3.2. Unsaturated fatty acids.

The presence of organic constituents in repeated frying oil <u>has</u> been examined that it <u>contains</u> elaidic acid, oleic acid, linoleic acid, cis-11-eicosenoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. Based on Figure 2A the content of untreated cooking oil from


Deleted[Alexandra Burdusel]: in

Deleted[Alexandra Burdusel]: have

Deleted[Alexandra Burdusel]: is containing


elaidic acid showed that 0.09% (0 times), 0.09% (1 time), 0.11% (5 times) and 0.11% (10 times), while the frying oil added 0.03% turmeric extract showed the treatment before frying 0.07% (0 times), 0.09% (1 time), 0.09% (5 times) and 0.09% (10 times). If seen from the frequency of elaidic acid (Figure 2A) that repeated frying can increase the level of elaidic acid and compare with standard <1 that it does not exceed the specified standard. This is because trans fatty acids (TFA) in elaidic acid are unsaturated fatty acids with at least one double bond in the form of trans configuration that can occur naturally from ruminants-based meat and dairy products, or artificially through partial hydrogenation of vegetable oils in industry food processing [36]. Sartika also reported that trans fatty acids (elaidate) were only formed after the second repetition of deep-frying, and their levels increased with the repeated use of oil. Based on the initial formation of trans fatty acids, the frying process should be done on medium heat (<200°C), and the cooking oil used should not exceed 2 (two) repetitions. Not so in the oleic acid compound (Figure 2B) shows a tendency to vary, if it is compared with the standard of 37.3-40.8. Whereas the recycled frying oil added with 0.03% turmeric extract showed an increase along with the repetition of the frying and when compared with the standard 37.3-40.8. These results indicate that oleic acid is still lower than the standard value.

Furthermore, the content of linoleic acid (Figure 2C) in untreated cooking oil showed the same conditions varying when compared with the standard of 9.1-11.0. One that met the standard was the treatment before the tenth frying and frying, while those that do not meet the standards in the first and fifth frying treatment. Then, it compared with frying cooking oil added 0.03% turmeric extract showed an increase along with the repetition of the frying and compared with the standard the first, fifth, and tenth frying have met the standards. Meanwhile, which did not meet the standards in the treatment before the addition of turmeric extract such as the first and fifth frying. This result showed that repeated frying could increase the levels of linoleic acid in the oil from repeated frying by adding 0.03% turmeric extract. It is due to the conjugation of linolenic acid isomer refers to a group of positions and geometrical isomers of omega-3-α-linolenic acid essential acids (cis-9, cis-12, cis-15 C18: 3; ALA) [37,38].

Deleted[Alexandra Burdusel]: From t

Deleted[Alexandra Burdusel]: can

Figure 2. Unsaturated fatty acids component (A) elaidic acid, (B) oleic acid, (C) linoleic acid, (D) cis-11-eicosenoic acid, (E) linolenic acid, and (F) cis-11,14-eicosadienoic acid.

The content of cis-11-eicosenoic acid (Figure 2D) in untreated cooking oil and added 0.03% turmeric extract had decreased levels caused by slow oxidation reactions against cis-11-eicosenoic acid. The frequency of linolenic acid (Figure 2E) in unprocessed cooking oil shows a variable trend. At the beginning of the frying (1 time), there was an increase compared to those not treated, but over time the frying duration decreases. In otherwise, by adding turmeric extract shows a quite static level before frying to the tenth repetition treatment. It shows that turmeric extract can suppress the occurrence oxidation reaction. Meanwhile, Figure 2F depicts cis-11-14-eicosadienoic acid has increased in untreated cooking oil, while the unique by adding turmeric extract dramatically decrease levels. It is concluded cooking oil without treatment has shown increase unsaturated acid levels. The performance of turmeric extract has quite demonstrated efficiency in suppressing chemical reactions during frying treatment [39]. In addition, turmeric extract can function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during repeated frying. This will affect the composition of fatty acids contained in cooking oil. According to Kim and Clifton [40] showed that curcumin (diferuloylmethane) is the main secondary metabolite in turmeric extract, which is beneficial to the human body as antioxidant and anti-inflammatory properties. Curcumin, as a bioactive component, has been shown to be a broad biological action. To date, it has been reported that natural colored extracts are isolated from turmeric by various methods such as maceration, digestion, microwave, and infusion [21]. Turmeric varieties studied by Tanvir et al. [18] is a useful source of natural antioxidants and can provide protection against free radical damage. Curcumin can be used as a food additive and is also good for use as conventional medicine [41].

4. Conclusions

Deleted[Alexandra Burdusel]: has

Deleted[Alexandra Burdusel]: the

Deleted[Alexandra Burdusel]: to suppress

Deleted[Alexandra Burdusel]: u

This study reports the chemical composition of cooking oil consisting of saturated fatty acids, such as lauric acid, myristic acid, palmitic acid, and stearic acid. Whereas, the unsaturated fatty acids of elaidic acid, oleic acid, linoleic acid, cis-11-eicosedienoic acid, linolenic acid, and cis-11,14-eicosedienoic acid. The highest saturated fatty acid levels in cooking oil before frying, are palmitic acid of 30.88%, whereas unsaturated fatty acids, namely oleic acid of 35.86%. The highest saturated fatty acid content in the oil which has added turmeric extract before frying is palmitic acid of 28.5%, while unsaturated fatty acids like oleic acid of 32.97%. Turmeric extract added to cooking oil can function as an anticosidan so that it can inhibit thermal oxidation in cooking oil during repeated frying. The treatment of repeated frying affects the fatty acids contained in repeated cooking oils, both saturated fatty acids and unsaturated fatty acids.

Funding

This research received no external funding.

Acknowledgments

We are grateful for the laboratory facilities from the Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, in conducting this research.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Prasetyo, J. Studi Pemanfaatan Minyak Jelantah Sebagai Bahan Baku Pembuatan Biodiesel. *Jurnal Ilmiah Teknik Kimia* **2018**, *2*, 45–54, http://dx.doi.org/10.32493/jitk.v2i2.1679.
- 2. Gashaw, A.; Getasetegn, M. Chemistry and Health Impacts of Trans Fatty Acids. *Journal of Chemical Technology & Metallurgy* **2018**, *53*, 159–169.
- 3. Rule, D.C.; Liebman, M.; Liang, Y. Bin Impact of different dietary fatty acids on plasma and liver lipids is influenced by dietary cholesterol in rats. *The Journal of Nutritional Biochemistry* **1996,** 7, 142–149, https://doi.org/10.1016/0955-2863(95)00192-1.
- 4. Falade, A.O.; Oboh, G.; Okoh, A.I. Potential health implications of the consumption of thermally-oxidized cooking oils—a review. *Polish journal of food and nutrition sciences* **2017**, *67*, 95–106, https://doi.org/10.1515/pjfns-2016-0028.
- 5. Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry—A review. *Food bioscience* **2015**, *10*, 26–41, https://doi.org/10.1016/j.fbio.2015.01.003.
- 6. Dewi, T.I.; Twilana, M. Bulk Cooking Oil Quality Improvement Using Adsorbent Activated Bentonite. *UNESA Journal of Chemistry* **2012**, *1*, 47–53.
- 7. Sartika, R.A.D. Pengaruh suhu dan lama proses menggoreng (deep frying) terhadap pembentukan asam lemak trans. *Makara Journal of Science* **2009**, *13*, 23–28, https://doi/org/10.7454/mss.v13i1.354.
- 8. Oluwaniyi, O.O.; Dosumu, O.O.; Awolola, G.V. Effect of cooking method on the proximate, amino acid and fatty acid compositions of Clarias gariepinus and Oreochromis niloticus. *Journal of the Turkish Chemical Society Section A: Chemistry* **2017**, *4*, 115–132, https://doi.org/10.18596/jotcsa.53143.
- 9. Weber, J.; Bochi, V.C.; Ribeiro, C.P.; Victório, A. de M.; Emanuelli, T. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. *Food Chemistry* **2008**, *106*, 140–146, https://doi.org/10.1016/j.foodchem.2007.05.052.
- 10. Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. *Comprehensive reviews in food science and food safety* **2006**, *5*, 169–186, https://doi.org/10.1111/j.1541-4337.2006.00009.x.
- 11. Akhtar, S.; Tanveer, M.; Ismail, A.; Ismail, T.; Hussain, M. Safety evaluation of oil samples collected from different food points of multan city of Pakistan. *International Journal of Food and Allied Sciences* **2018**, *3*, 43–48, https://doi.org/10.21620/ijfaas.2017243-48.

- 12. Baba-Moussa, F.; Zynzendorf, Y.N.; Bonou, J.; Gbénou, J.; Moudachirou, M.; Kotchoni, S.O.; Toukourou, F.; Baba-Moussa, L. Kit reliability for controlling the quality of oils in food frying. *Journal of Microbiology Biotechnology and Food Sciences* **2020**, *9*, 121–134.
- 13. Abriana, A.; Mahendradatta, M.; Djide, N.; Zainal, Z. Analysis of Trans Fatty Acid Content and Viscosity of the Repeteadly Used Frying Oil. *International Journal of Agriculture System* **2013**, *1*, 71–79.
- 14. Abiona, O.O.; Awojide, S.H.; Anifowoshe, A.J.; Babalola, O.B. Comparative study on effect of frying process on the fatty acid profile of vegetable oil and palm oil. *E-International Scientific Research Journal* **2011**, *3*, 210–219.
- 15. Kala, A.L.A. Cis-, trans-and saturated fatty acids in selected hydrogenated and refined vegetable oils in the Indian market. *Journal of the American Oil Chemists' Society* **2012**, *89*, 1813–1821, https://doi.org/10.1007/s11746-012-2086-y.
- 16. Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The Effect of Coconut Oil Consumption on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Clinical Trials. *Circulation* **2020**, *141*, 803–814, https://doi.org/10.1161/CIRCULATIONAHA.119.043052.
- 17. Lim, S.Y.; Abdul Mutalib, M.S.; Khaza'ai, H.; Chang, S.K. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. *International Journal of Food Properties* **2018**, *21*, 2428–2451, https://doi.org/10.1080/10942912.2018.1522332.
- 18. Tanvir, E.M.; Hossen, M.; Hossain, M.; Afroz, R.; Gan, S.H.; Khalil, M.; Karim, N. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. *Journal of Food Quality* **2017**, *2017*, 1–8, https://doi.org/10.1155/2017/8471785.
- 19. Shankar, S.; Srivastava, R.K. Curcumin: structure, biology and clinical applications. In: *Nutrition, diet and cancer*. Springer, **2012**; pp. 413–457, https://doi.org/10.1007/978-94-007-2923-0_17.
- 20. Kim, J.H.; Yang, H.J.; Kim, Y.-J.; Park, S.; Lee, O.; Kim, K.S.; Kim, M.J. Korean turmeric is effective for dyslipidemia in human intervention study. *Journal of Ethnic Foods* **2016**, *3*, 213–221, https://doi.org/10.1016/j.jef.2016.08.006.
- 21. Nabati, M.; Mahkam, M.; Heidari, H. Isolation and characterization of curcumin from powdered rhizomes of turmeric plant marketed in Maragheh city of Iran with soxhlet technique. *Quarterly Journal of Iranian Chemical Communication* **2014**, *2*, 236–243.
- 22. Palve, Y.P.; Nayak, P.L. Curcumin: a wonder anti-cancer drug. *International Journal of Pharmacy and Biomedical Sciences* **2012**, *3*, 60–69.
- 23. Abriana, A.; Johannes, E. Turmeric extract as an antioxidant in repeatedly used cooking oil. *International Journal of Scientific & Technology Research* **2014**, *3*, 347–350.
- 24. O'brien, R.D. Fats and oils: formulating and processing for applications. CRC press, 2008.
- 25. Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. *International Journal of Low-Carbon Technologies* **2019**, 14, 417–425, https://doi.org/10.1093/ijlct/ctz038.
- 26. Bazina, N.; He, J. Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. Journal of food science and technology 2018, 55, 3085–3092, https://doi.org/10.1007/s13197-018-3232-9.
- 27. Kwon, S.Y.; Massey, K.; Watson, M.A.; Hussain, T.; Volpe, G.; Buckley, C.D.; Nicolaou, A.; Badenhorst, P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. *Life science alliance* **2020**, *3*, 1–17, https://doi.org/10.26508/lsa.201900356.
- 28. Suryani, S.; Sariani, S.; Earnestly, F.; Marganof, M.; Rahmawati, R.; Sevindrajuta, S.; Mahlia, T.M.I.; Fudholi, A. A Comparative Study of Virgin Coconut Oil, Coconut Oil and Palm Oil in Terms of Their Active Ingredients. *Processes* **2020**, *8*, 402–413, https://doi.org/10.3390/pr8040402.
- 29. Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. *Journal of the American Oil Chemists' Society* **2015**, *92*, 1–15, https://doi.org/10.1007/s11746-014-2562-7.
- 30. Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the components from goat's milk, recent advances for functional dairy products development and its implications on human health. *Journal of Functional Foods* **2019**, *52*, 243–257, https://doi.org/10.1016/j.jff.2018.11.017.
- 31. Taufik, M.; Lioe, H.N.; Yuliana, N.D. Evaluation of Major Fatty Acids Determination in Palm Oil by Gas Chromatography-Flame Ionization Detection. *Agritech* **2016**, *36*, 308–316, https://doi.org/10.22146/agritech.16603.
- 32. van Rooijen, M.A.; Mensink, R.P. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers-A Systematic Review. *Nutrients* **2020**, *12*, 615–629, https://doi.org/10.3390/nu12030615.
- 33. Petrović, M.; Kezić, N.; Bolanča, V. Optimization of the GC method for routine analysis of the fatty acid profile in several food samples. *Food Chemistry* **2010**, *122*, 285–291, https://doi.org/10.1016/j.foodchem.2010.02.018.
- 34. Alireza, S.; Tan, C.P.; Hamed, M.; Che Man, Y.B. Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. *International food research journal* **2010**, *17*, 295–302.
- 35. Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. *Food and chemical toxicology* **2010**, *48*, 2972–2979, https://doi.org/10.1016/j.fct.2010.07.036

- 36. Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and cardiovascular disease. *New England Journal of Medicine* **2006**, *354*, 1601–1613, https://dx.doi.org/10.12669%2Fpjms.301.4525.
- 37. Taha, A.Y. Linoleic acid–good or bad for the brain? *NPJ science of food* **2020**, *4*, 1–6, https://doi.org/10.1038/s41538-019-0061-9
- 38. Białek, M.; Czauderna, M.; Białek, A. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. *Journal of Animal and Feed Sciences* **2017**, *26*, 3–17, https://doi.org/10.22358/jafs/68862/2017.
- 39. Rebiai, A.; Belfar, M.L.; Mesbahi, M.A.; Nani, S.; Tliba, A.; Amara, D.G.; Chouikh, A. Fatty acid composition of Algerian propolis. *Journal of Fundamental and Applied Sciences* **2017**, *9*, 1656–1671.
- 40. Kim, Y.; Clifton, P. Curcumin, cardiometabolic health and dementia. *International journal of environmental research and public health* **2018**, *15*, https://doi.org/10.3390/ijerph15102093.
- 41. Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. *Nutrition journal* **2017**, *16*, 68–78,https://doi.org/10.1186/s12937-017-0293-y.

Round 1 Reviewer Report

Professor Editor, Biointerface Research in Applied Chemistry

August 24, 2020

Dear Professor,

We would like to say thank you very much for your email regarding the revision of our manuscript entitled "Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a Potential Antioxidant Agent" submitted as an Article to "Biointerface Research in Applied Chemistry". We also would like to say thank you to the referee for the comments and suggestions on the manuscript.

We revised the manuscript by fully considering the referee's comments. The revision that has been made in the article is indicated by reddened in the paper.

In this revision, we have thoroughly examined the English of the paper by asking the expert. The revision has been highlighted in the paper. In addition, in alignment with our institution's policy, we must include two corresponding authors for this submission. As a result, we have updated the manuscript to include the corresponding author details.

In the following, we enlist our responses to the editor and referee's comments.

Corresponding author,

Prof. Dr. Maulidiyah

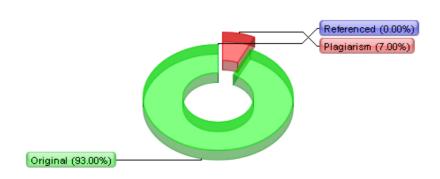
No.	Reviewer Comment/Sugestion	Authors Action/Response	
1	for each author please provide ORCID	Thank you for your response.	
		We have provided ORCID	
		IDs for all authors in the	
		revised manuscript.	
2	Please underline the lastname (family name) of each	Thanks for your response.	
	author. (The right order is Firstname Lastname)	The last names of each	
		author have been underlined	
		as per the required format	
		(Firstname Lastname).	
3	The author needs to correct the following minor errors:	Thanks for your suggestion.	
	- Page 1: This article is an open-access article	The grammatical structure of	
	distributed under the terms and conditions of the	the sentences has been	
	Creative Commons Attribution (CC BY) license	revised for clarity and	

- (https://creativecommons.org/licenses/by/4.0/).
- Page 1: Palm oil has a fatty acids composition, which is different from other cooking oils
- Page 2: In the community, cooking oil is widely used in food processing because it can function as a medium for conveying heat, adding a savoury taste, a adding nutritional value and calories in food, texture, and appearance of food becomes more attractive, and a dry surface [6,7].
- Page 2: Saturated fatty acids have adverse effects on health, otherwise unsaturated fatty acids are a good source of nutrition for health.
- Page 2: a hematological system, white blood cell counts. (WBC), neutrophil and lymphocyte counts, obesity,....
- Page 3: According to Abriana and Johannes [23] showed that the addition of turmeric extract into cooking oil could reduce the formation of trans fatty acids and extend the time of use of cooking oil
- Page 3: This study aims to test the composition of fatty acids in cooking oil from repeated frying using an experimental laboratory test with 2 (two) types of treatment
- Page 4: The analysis was carried out on fresh oil (oil that has not been used for frying foodstuffs) as control and on two oil samples
- Page 6: We also compare each organic
- constituents in cooking oil with results that have been studied from O'Brien and Richard D. [24] as standard organic constituents in fats and oils.
- Page 6: Based on frying treatment, the lauric acid frequency looks to increase, it means that the repetition of a frying treatment can increase the lauric acid compound.
- Page 6: Then it is compared with standard 0.1-1.0 shows that do not exceed the specified standard.
- Page 6: Lauric acid plays a role in maintaining health, among others, functions to kill various types of microbes derived from fatty acids, to increase metabolic activity, and protect the body from disease and accelerate healing [28].
- Page 7: Palmitic acid is also the main

accuracy. Further minor errors throughout the manuscript have been addressed accordingly.

- component of saturated fatty acids in food, which contains in vegetable oils 6-10% and can increase LDL cholesterol levels.
- Page 7: The presence of organic constituents in repeated frying oil has been examined that it contains elaidic acid
- Page 8: This is because trans fatty acids (TFA) in elaidic acids are unsaturated fatty acids with at least one double bond in
- Page 8: This result showed that repeated frying could increase the levels of linoleic acid in the oil from repeated frying by adding 0.03% turmeric extract
- Page 9: The content of cis-11-eicosenoic acid (Figure 2D) in untreated cooking oil and added 0.03% turmeric extract had decreased levels caused by slow oxidation reactions against cis-11-eicosenoic acid
- Page 9: It shows that turmeric extract can suppress the occurrence oxidation reaction
- Page 9: The performance of turmeric extract has quite demonstrated efficiency in suppressing chemical reactions during frying treatment
- Page 9: To date, it has been reported that natural colored extracts are isolated from turmeric by various methods such as maceration, digestion, microwave, and infusion

4 References:


Please add at least **10-15 references** from the last 2 years (**2019-2020**)

Ten references from the years 2019–2020 have been added to strengthen the literature review and contextualize the findings within recent studies. These are highlighted in the revised reference list.

Plagiarism Detector v. 1655 - Originality Report 24.08.2020 11:22:56

Analyzed document: 1146_C.docx Licensed to: Alexandru Mihai Grumezescu Comparison Preset: Word-to-Word. Detected language: English

Relation chart:

Distribution graph:

Top sources of plagiarism:

```
% 18 wrds: https://www.researchgate.net/publication/340400055_A_Comparative_Study_of_Virgin...
% 4 wrds: https://www.researchgate.net/publication/257730049_cis-_trans-_and_Saturated_Fat...
% 4 wrds: https://www.researchgate.net/publication/235907043_Effect_of_frying_process_on_f...
[Show other Sources:]
```

Processed resources details:

151 - Ok / 3 - Failed [Show other Sources:]

Important notes:

Active References (Urls Extracted from the Document):

No URLs detected

Excluded Urls:

No URLs detected

Included Urls:

No URLs detected

Detailed document analysis:

Article

Volume 10, Issue ..., 2020, ...- ...

https://doi.org/10.33263/BRIAC00.000000

https://doi.org/10.33263/BRIAC00.000000Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a Potential Antioxidant AgentAndi Abriana 1, *, Hamsina Hamsina 2, Suriana Laga 1, Maulidiyah Maulidiyah 3,*1

Plagiarism detected: 0,1% http://psasir.upm.edu.my/id/eprint/...

id: 1

Department of Food Technology, Faculty of

Agriculture, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi - Indonesia. 2 Department of Chemical Engineering, Faculty of Engineering, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi - Indonesia.3

Department of Chemistry, Faculty of Mathematics and Natural sciences, Universitas Halu Oleo, Kota Kendari 93231 - Southeast Sulawesi - Indonesia*

Correspondence: andi.abriana510@gmail.com (A.A.); maulid06@yahoo.com (M.M.); Scopus Author ID 56648049800Received: date; Revised: date; Accepted: date; Published: dateAbstract:

The objective of this study to compare the fatty acids composition in cooking oil from repeated frying without added turmeric extract and added. The research design is testing the composition of fatty acids in repeated cooking oil using two types of treatment, namely cooking oil from frying without adding turmeric extract and cooking oil from frying with 0.03% turmeric extract added with 10 times frying repeat because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The analysis of fatty acids was conducted using gas chromatography. Based on these results that the fatty acid components were produced of saturated fatty acids, namely lauric acid, myristic acid, palmitic acid, and stearic acid, whereas unsaturated fatty acids also detected such as elaidic acid, oleic acid, linoleic acid, cis-11-eicosadienoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. The highest saturated fatty acid content in cooking oil before frying is palmitic acid (30.88%), whereas unsaturated fatty acid was oleic acid (35.86%).

Plagiarism detected: 0,11% https://upscgk.com/upsc-gk/27c2277e... + 3 resources!

id: 2

The highest content of saturated fatty acids

in cooking oil has been added turmeric extract before frying is palmitic acid (28.5%), while unsaturated fatty acid of oleic acid was 32.97%. Keywords: cooking oil; fatty acid; curcumin; chemical; content.c 2020 by the authors.

Plagiarism detected: 0,38% https://www.researchgate.net/public... + 9 resources!

id: 3

This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.

0/).1. Introduction

Cooking oil is one of the foodstuffs consumed by the majority of Indonesia's population with consumption levels reaching more than 2.5 million tons per year, or more than 12 kg/person/year, and also the dominant foodstuffs used by the community to process of feedstock into food made from palm oil [1]. As a food ingredient, palm oil has several advantages over other cooking oils, which contain carotene as an anti-cancer and tocopherol as a source of vitamin E3. In addition, palm oil can be a non-cholesterol cooking oil (low cholesterol levels) and contains fatty acids

, which are the main components of fats consisting

Plagiarism detected: 0,1% https://www.researchgate.net/public... + 2 resources!

id: **4**

of saturated and unsaturated fatty acids

[2,3]. The main components of saturated fatty acids in palm cooking oil are palmitic acid (C-16),

Plagiarism detected: 0,06% https://www.researchgate.net/public...

id: 5

oleic acid (C-18: monounsaturated)

, and linoleic acid (C-18: polyunsaturated), while the other components are in amounts, few are myristic acid (C-14) and stearic acid (C-18) [4]. Palm oil has a fatty acid composition, which is different from other cooking oils because it contains a composition of saturated acids that is almost the same as unsaturated fatty acids, namely 50% saturated fatty acids and 50% unsaturated fatty acids [5]. In the community, cooking oil is widely used in food processing because it can function as a medium for conveying heat, adding a savo ry taste, adding nutritional value and calories in food, texture, and appearance of food becomes more attractive,

ry taste, adding nutritional value and calories in food, texture, and appearance of food becomes more attractive, and dry surface [6,7]. In addition, cooking oil can also be used for various food processing processes and is

Plagiarism detected: 0,1% https://www.researchgate.net/public...

id: 6

used in almost all types of

food preparation such as frying, sautéing, grilling, baking, curling, rolling, and cooking by means of extrusion [8]. Frying is one way to cook raw food into cooked food using cooking oil. Deep frying processing requires a large amount of cooking oil in order to submerge entirely of food ingredients in cooking oil [5]. This condition

encourages to use cooking oil repeatedly. The use of cooking oil the longer and more often (repeatedly), the quality will decrease due to oxidation fatty acid. Cooking oil has been oxidized can cause poisoning and other negative effects on human health, but the tendency is that people still often use cooking oil repeatedly for economic purposes [9,10]. In addition to economic factors, it is also due to an increase in prices of basic necessities due to government policies to raise fuel prices, thus encouraging people both industry and households to use cooking oil repeatedly. In developing countries, there are still many repeated frying using cooking oil repeatedly with economic goals. Cooking oil has become an inseparable part of the modern food processing system so that its safety is very important for health institutions throughout the world to provide health insurance among the public in consuming cooking oil [11]. The quality of cooking oil is determined by its constituent fatty acid components, which are classes of saturated or unsaturated fatty acids. Saturated fatty acids have adverse effects on health

otherwise unsaturated fatty acids are a good source of nutrition for health. Saturated fatty acids have the potential to increase blood cholesterol, while unsaturated fatty acids can reduce blood cholesterol. In the cooking process, the chemical composition of cooking oil used has contained frying foodstuffs of unsaturated fatty acids and other byproducts that can reduce the quality of cooking oil so that it becomes toxic and often carcinogenic [12]. The composition of fatty acids in cooking oil changes physicochemical properties due to the thermal process during frying. The physicochemical properties of cooking oil used repeatedly changed at a frying temperature of 180'C and a frying time of 10 minutes by repeating the frying five times, namely the formation of trans fatty acids (chemical properties) and increased viscosity (physical properties) [13]. Some in vivo research results suggest that consumption of thermally oxidized cooking oil may be unhealthy because it can affect the lipid profile, namely an increase in low-density lipoprotein (LDL), a decrease in high-density lipoprotein (HDL) and an increase in cholesterol levels, a hematological system, white blood cell counts. (WBC), neutrophil and lymphocyte counts, obesity, coronary heart disease (CHD) and cardiovascular disease, increased blood pressure, atherosclerosis, kidney function, and can induce lipid peroxidation and oxidative stress that have been linked to the pathogenesis of various degenerative diseases [14,15]. Consumption of coconut oil produces LDL cholesterol, which is much higher than non-tropical oil [16].Based on previous studies, the frying food with a deep frying method using a pan for 15 minutes. The results obtained are that the sample contains more unsaturated fatty acids than saturated, ie

palmitic acid is the main saturated fatty acid; oleic acid

Plagiarism detected: 0,1% https://www.researchgate.net/public...

is the main unsaturated fatty acid

with linoleic acid, linolenic acid, and palmitoleic acid in varying amounts [8]. Lim et al. has detected the falsification of fresh palm olein (FPO) with RCO using fatty acid compositions and Fourier-transform infrared (FTIR) spectral analysis combined with chemometrics [17]. The FPO is added to the electric frying pan (DFT-6000) with a maximum capacity (5.5 L) and heated for about 20 minutes to reach a temperature of 180'C. The results show a tendency to decrease PUFAs, which is consistent with the increasing magnitude of changes in the level of counterfeiting, and this might be a good indicator to detect the occurrence of FPO forgery with RCO. Of the two results of this study, more specific testing of cooking oil without using additional elements. Especially, the objective in this study is applied cooking oil with additional elements, namely turmeric extract obtained from the turmeric plant (Curcuma longa) as one of the sources of natural antioxidants that contain curcumin. Turmeric is a useful source of natural antioxidants agent

s and can provide significant protection against damage to cooking oil due to free radicals and can also prevent fat peroxidation [18,19]. Curcumin (C21H20O6) in turmeric is an active component, hydrophobic yellow-orange polyphenols derived from turmeric rhizomes, and has been used in food as a stabilizer in jelly or as a natural dye in cheese and as an additive in traditional medicine [20-22]. According to Abriana and Johannes [23] showed that the addition of turmeric extract into cooking oil could reduce the formation of trans fatty acids and extend the time of use of cooking oil; and based on the results of the analysis of trans fatty acid levels, the best treatment is the addition of turmeric extract at a concentration of 0.03%. The objective to be achieved in this research is to compare the composition of fatty acids in cooking oil from repeated frying without added turmeric extract with cooking oil that has been added turmeric extract. The contribution of this research is more towards food safety and health for consuming fried food.2. Materials and Methods

This study aims to test the composition of fatty acids in cooking oil from repeated frying using a n experimental laboratory test with 2 (two) types of treatment, namely cooking oil from frying without adding turmeric extract and frying oil from frying with added turmeric extract with 10 repetitions of frying because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The main focus of research is to uncover the phenomenon of cooking oil due to repeated frying by analyzing fatty acid levels using gas chromatography. Preparation of turmeric extract

The use of turmeric extract is a consideration of its function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during frying because it contains curcumin

which is a yellow active component and can be extracted from turmeric rhizome. Turmeric is first selected and cleaned, then cut into small pieces or thinly. Then the turmeric is weighed as much as 100 grams for preparation of extraction. 100 grams of turmeric is dried in an oven at 100'C for 1 hour. After drying, then put into a three-neck flask plus 98% glacial acetic acid solvent that has been diluted with a ratio of 1:1 with a total volume of 300 mL solvent. The heater is turned on, and the return cooler is activated. The zero time of extraction is determined

id: **7**

when glacial acetic acid reaches its boiling point (118.1'C) and ends at the specified time for 75 minutes. The extraction results are cooled and filtered using filter paper. The filtrate is distilled while the residue is removed. The filtrate obtained from the extraction was put into a distillation flask to separate the turmeric extract from the solvent. The heater is turned on, and the result is solvent and residue. The residue is dried in an oven at 120'C to remove the residual glacial acetic acid that is still present in turmeric extract. After that, weighing is done until a constant weight is obtained. Turmeric extract was added to cooking oil before frying food with a concentration of 0.03% [23].Frying of food Test.

Food frying is done using the deep frying method by using an electric frying kettle equipped with a temperature and time regulator. The frying process starts by putting fresh cooking oil into the frying boiler as much as 3.5 liters (maximum capacity), then the kettle is heated to a temperature of 180'C. Food is fried until cooked within 10 minutes and made as little as possible stirring to reduce the flow of convection in oil and oxidation reactions

Plagiarism detected: 0,1% https://www.facebook.com/lovefmbeli... + 2 resources!

id: 8

due to the aeration process. The

analysis was carried out on fresh oil (oil that has not been used for frying foodstuffs) as control and on two oil samples, namely cooking oil from frying without added turmeric extract and cooking oil from frying with added turmeric extract. The oil used for repeating the frying is the same oil (it is not replaced, and no additional volume of fresh oil is made). Frying is repeated 10 times with the same temperature and time of frying. Cooking oil samples were taken immediately after the frying process as much as 200 mL, then the oil in the kettle was allowed to cool down and continued with the next frying which is frying first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth [23]. Samples taken for analysis of fatty acid content are samples from the repetition of the first, fifth, and tenth frying.2.3. Characterization of Cooking Oil. First, the cooking oil is hydrolyzed into fatty acids, then transformed into a more volatile ester form. The transformation is carried out by methylation to obtain fatty acid methyl esters (FAME); Furthermore, this FAME was analyzed with GC-2010 (Gas Chromatograph) Plus Serial No. gas chromatography. C11804700336 Shimadzu Corp., using standard methods from

Plagiarism detected: 0,11% https://www.mdpi.com/2304-8158/9/7/... + 2 resources!

id: **9**

The Association of Official Analytical Chemists (AOAC).

The analysis starts by injecting of solvent as much as 1.0 µL into the column to obtain a baseline. If the carrier gas flow and heating system are perfect, the peak of the solvent will appear in less than 1 minute. After obtaining the baseline, then proceed by injecting 1 µL of the standard FAME mixture (Supelco TM 37 Component FAME Mix Catalog No. 47885-U, Bellefonte, PA, USA). When all the peaks are out, the prepared sample is injected as much as 1.0 uL. Retention times and peak samples were measured for each component.

3. Results and Discussion

In this study, we produced the component of saturated fatty acids in cooking oil namely lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0)

Plagiarism detected: 0,06% https://www.kosfaj.org/archive/view... + 2 resources!

id: **10**

, and stearic acid (C18:0

) while acids Unsaturated fats such as elaidic acid (C18:1n9t), oleic acid (C18:1n9c), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), and cis-11,14-eicosadienoic acid (C20:2). The highest saturated fatty acid content in fresh cooking oil (as control) is palmitic acid (C16:0) meanwhile

, unsaturated fatty acid is oleic acid (C18:1n9c). The higher content of palmitic acid (C16:0) in cooking oil is the major component of palmitic acid in palm oil [11]. The HPLC analysis has exhibited that cooking oil based on palm oil contains the high saturated fatty acid like palmitic acid 30.88% and unsaturated fatty acids namely oleic acid 35.86%, linoleic acid 10.41%, stearic acid 3.43%, mistic acid 0.76%; lauric acid 0.18%; linolenic acid 0.18%; cis-11-eicosenoic acid 0.14%; elaidic acid 0.09% and cis-11,14-eicosadienoic acid 0.07% (Table 1). Table 1. Composition of fatty Acids from recycled frying cooking oil.Treatment

Fatty Acids

Frying Treatment (time) [%]

Standards based on O'Brien (2003) [24] 0

1 5 10

Untreated Cooking Oil

Saturated Fatty Acids

Lauric Acid, C12:0

0.18 ±0.003

0.18 ±0.010

0.19 ±0.015

0.19 ±0.015

0.1-1.0

Myristic Acid, C14:0

```
0.76 ±0.010
0.89 ±0.012
0.86 ±0.036
0.82 ±0.017
0.9-1.5
Palmitic Acid, C16:0
30.88 ±0.080
34.83 ±0.555
34.00 ±1.167
32.90 ±1.795
41.8-46.8
Stearic Acid, C18:0
3.43 ±0.035
3.75 ±0.115
3.73 ±0.075
3.68 ±0.367
4.5-5.1
Unsaturated Fatty Acids
Elaidic Acid, C18:1n9t
0.09 ±0.010
0.09 ±0.006
0.11 ±0.001
0.11 ±0.001
Oleic Acid, C18:1n9c
35.86 ±0.145
40.47 ±0.746
40.18 ±0.812
38.52 ±2.807
37.3-40.8
Linoleic Acid, C18:2n6c
10.41 ±0.02
11.56 ±0.165
11.41 ±0.214
10.61 ±0.735
9.1-11.0
Cis-11-Eicosenoic Acid, C20:1
0.14 ±0.006
0.13 ±0.006
0.13 ±0.006
0.13 ±0.015
Linolenic Acid, C18:3n3
0.18 ±0.005
0.20 ±0.010
0.19 ±0.003
0.17 ±0.006
1.5
Cis-11,14-Eicosedienoic Acid, C20:2
0.07 ±0.001
0.09 ±0.021
0.10 ±0.017
0.09 ±0.015
Cooking Oil + 0.03% Turmeric
Saturated Fatty Acids
Lauric Acid, C12:0
0.14 ±0.001
0.10 ±0.006
0.11 ±0.006
0.11 ±0.012
0.1-1.0
Myristic Acid, C14:0
0.77 ±0.010
0.75 ±0.016
0.73 ±0.021
```

```
0.81 ±0.051
0.9-1.5
Palmitic Acid, C16:0
28.5 ±0.580
29.49 ±0.640
29.25 ±0.957
28.75 ±3.788
41.8-46.8
Stearic Acid, C18:0
2.96 ±0.050
3.44 ±0.081
3.47 ±0.090
3.61 ±0.182
4.5-5.1
Unsaturated Fatty Acids
Elaidic Acid, C18:1n9t
0.07 ±0.001
0.09 ±0.006
0.09 ±0.006
0.09 ±0.006
Oleic Acid, C18:1n9c
32.97 ±0.560
33.24 ±1.025
34.05 ±1.100
35.43 ±1.974
37.3-40.8
Linoleic Acid, C18:2n6c
8.89 ±0.160
9.74 ±0.211
9.94 ±0.495
10.19 ±0.560
9.1-11.0
Cis-11-Eicosenoic Acid, C20:1
0.14 ±0.006
0.11 ±0.006
0.12 ±0.001
0.12 ±0.006
Linolenic Acid, C18:3n3
0.18 ±0.003
0.18 ±0.015
0.18 ±0.017
0.18 ±0.012
Cis-11,14-Eicosedienoic Acid, C20:2
0.06 ±0.001
0.05 ±0.010
0.04 ±0.010
0.06 ±0.010
```

In addition, we added the turmeric extract 0.03% into cooking oil to suppress oxidation reaction shows that the high saturated fatty acid such as palmitic acid 28.5% and unsaturated fatty acids content of oleic acid 32.97%, linoleic acid 8.89%, stearic acid 2.96%, myristic acid 0.77%, linolenic acid 0.18%; lauric acid 0.14%, cis-11-eicosenoic acid 0.14%; elaidic acid 0.07% and cis-11,14-eicosadienoic acid 0.06% (Table 1). The composition of most fatty acids in recycled cooking oil (RCO) is in the range according to Codex standards, except for C8:0, C10:0, C11:0, C11:0, trans C18:1, and polyunsaturated fatty acids (PUFAs), C20:5 [17]. According to Awogbemi [25] reported that palm oil contained 87.7% unsaturated fatty acids and 12.3% saturated fatty acids. Based on these results also show the variation of cooking oil used and type of food fried greatly affect the properties and composition of fatty acids. Overall, in fresh cooking oil was contained 63.16% linoleic acid 20.72%, linolenic acid 10.53%, stearic acid 5.26%

, and the smallest component was palmitic acid 0.33% [26].3.1. Saturated fatty acids.The saturated fatty acid has been investigated into repeated frying cooking oil based on palm oil

; we found the lauric acid, myristic acid, palmitic acid, and stearic acid compounds. Certainly, palm oil as feedstock to produce cooking oil contains 92% saturated fatty acids, including 48% lauric acid, myristic acid 20%, and palmitic acid 9%, with monounsaturated fatty acids 6% and polyunsaturated fatty acids 1.7% [27]. Figure 1

extracted from Table 1 to observe the range composition and an upward or downward trend in each composition of organic constituents in cooking oil. Figure 1 was recurring frying oil without added turmeric extract showed that before fried the lauric acid of 0.18% (0 times), first frying 0.18% (1 time), fifth frying 0.19% (5 times) and tenth frying 0.19% (10 times). We also compare each organic constituents in cooking oil with results that have been studied from O'Brien and Richard D. [24] as standard organic constituents in fats and oils. Based on frying treatment, the lauric acid frequency looks to increase; it means that the repetition of a frying treatment can increase the lauric acid compound. Then it is compared with standard 0.1-1.0 shows that do not exceed the specified standard. Meanwhile, the cooking oil has been added turmeric extract 0.03% contains lauric acid of 0.14% (0 times), 0.10% (1 time), 0.11% (5 times) and 0.11% (10 times). The lauric acid frequency was decreased in the first frying, then increase in the fifth and tenth frying (+0.01). By adding 0.03% turmeric extract can reduce the lauric acid compound, then it is compared with a standard data where it does not exceed the predetermined. The lauric acid is also mostly found in virgin coconut oil (VCO)

, which consists of 90% medium-chain fatty acids (dominated by lauric acid, which is 45-55% and 10% long-chain fatty acids). If it is compared with oil palm, VCO has a higher of lauric acid content, which is 54.06%, meanwhile in palm oil of 0.10%. Lauric acid plays a role in maintaining health, among others, functions to kill various types of microbes derived from fatty acids, to increase metabolic activity, and protect the body from disease and accelerate healing [28]. Among saturated fatty acids, lauric acid has been shown to contribute the least to fat accumulation [29]. Likewise, myristic acid has not exceeded the predetermined standard. Myristic acid (C14:0) is a fatty acid that is found in palm kernel oil and coconut oil, which can increase low-density lipoprotein (LDL) cholesterol levels, but it is a minor group in food. It is a long-chain saturated fatty acid (14:0) and also one of the fattiest acids found in milk fat (above 10%) [30]. Figure 1.

Saturated fatty acids component, (A) Lauric acid, (B) Myristic acid, (C) Palmitic acid and (D) Stearic acid. Figure 1C the palmitic acid was quite increased along with the repetition of the frying

, and it's still lower than the standard which has been specified (41.8-46.8). Palmitic

Plagiarism detected: 0,1% https://www.sciencedirect.com/topic...

id: **11**

acid is the main fatty acid

in palm oil [31]. Palmitic acid is also the main component of saturated fatty acids in food, which contains vegetable oils 6-10% and can increase LDL cholesterol levels. The presence of palmitic acid in cooking oil can be used as an indicator to detect falsification of fresh palm oil (FPO) with RCO using fatty acid composition analysis (FAC) [17]. Figure 1D also exhibited of the stearic acid compound can be seen that has increased along with the repetition of the frying and compared with a standard in a range of 4.5-5.1 where the saturated fatty acid of stearic acid is still lower from predetermined standards. It is a major component of various types of fat with different amounts, such as animal fat (beef fat) containing 15-20% and only a little in vegetable oil, 4-5% [31]. Stearic acid lowers LDL and HDL cholesterol concentrations when compared with palmitic acid because these fatty acids are quickly converted to monounsaturated fatty acids and oleic acid interesterification of fats rich in palmitic acid or stearic acid does not appear to affect serum lipid fasting and (apo) lipoprotein [32]. Based on saturated fatty acid results and compared with standard fats and oils, we discover that the oil from repeated frying produces saturated fatty acids that do not exceed the specified standard. This means that repeated frying oil based on palm oil is still safe for consumption because of all the saturated fatty acids found within the reasonable standard range, though that can raise cholesterol levels (myristic acid and palmitic acid). In vegetable oils such as palm oil is dominated by more carbon atoms, whereas in animal oils are odd carbon atoms and contain more polyunsaturated fatty acids (PUFA) [33]. Cooking oil with high saturated fatty acid content will affect the stability of food items that are fried during frying [34,35]. In addition, the high content of fatty acids causes oil to be easily damaged during cooking processing because the oil will be heated continuously at high temperatures and direct contact with oxygen in the surrounding air

, which facilitates the oxidation reaction to the oil. According to Baba-Moussa et al. [12], an increase in temperature followed by a long heating time indicates that an increase in the fatty acid component forms triglycerides. The result of triglyceride hydrolysis will produce saturated and unsaturated fatty acids based on the presence or absence of carbon chain double bonds in the molecule.3.2. Unsaturated fatty acids. The presence of organic constituents in repeated frying oil has been examined that it contains elaidic acid, oleic acid, linoleic acid, cis-11-eicosenoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. Based on Figure 2A the content of untreated cooking oil from elaidic acid showed that 0.09% (0 times), 0.09% (1 time), 0.11% (5 times) and 0.11% (10 times), while the frying oil added 0.03% turmeric extract showed the treatment before frying 0.07% (0 times), 0.09% (1 time), 0.09% (5 times) and 0.09% (10 times). If seen from the frequency of elaidic acid (Figure 2A) that repeated frying can increase the level of elaidic acid and compare with standard 1 that it does not exceed the specified standard. This is because trans fatty acids (TFA) in elaidic acid are

Plagiarism detected: 0,17% https://www.researchgate.net/public...

id: 12

unsaturated fatty acids with at least one double bond in the

form of trans configuration that can occur naturally from ruminants-based meat and dairy products, or artificially through partial hydrogenation of vegetable oils in industry food processing [36]. Sartika also reported that trans fatty acids (elaidate) were only formed after the second repetition of deep-frying, and their levels increased with the repeated use of oil. Based on the initial formation of trans fatty acids, the frying process should be done on medium heat (200'C), and the cooking oil used should not exceed 2 (two) repetitions. Not so in the oleic acid

compound (Figure 2B) shows a tendency to vary, if it is compared with the standard of 37.3-40.8. Whereas the recycled frying oil added with 0.03% turmeric extract showed an increase along with the repetition of the frying and when compared with the standard 37.3-40.8. These results indicate that oleic acid is still lower than the standard value. Furthermore, the content of linoleic acid (Figure 2C) in untreated cooking oil showed the same conditions varying when compared with the standard of 9.1-11.0. One that met the standard was the treatment before the tenth frying and frying, while those that do not meet the standards in the first and fifth frying treatment. Then, it compared with frying cooking oil added 0.03% turmeric extract showed an increase along with the repetition of the frying and compared with the standard the first, fifth

, and tenth frying have met the standards. Meanwhile, which did not meet the standards in the treatment before the addition of turmeric extract such as the first and fifth frying. This result showed that repeated frying could increase the levels of linoleic acid in the oil from repeated frying by adding 0.03% turmeric extract. It is due to the conjugation of linolenic acid isomer refers to a group of positions and geometrical isomers of omega-3-α-linolenic acid essential acids (

Plagiarism detected: **0,05%** https://www.sciencedirect.com/topic...

id: 13

cis-9, cis-12, cis-15

C18: 3; ALA) [37,38].Figure 2.

Unsaturated fatty acids component (A) elaidic acid, (B) oleic acid, (C) linoleic acid, (D) cis-11-eicosenoic acid, (E) linolenic acid, and (F) cis-11,14-eicosadienoic acid.The content of cis-11-eicosenoic acid (Figure 2D) in untreated cooking oil and added 0.03% turmeric extract had decreased levels caused by slow oxidation reactions against cis-11-eicosenoic acid. The frequency of linolenic acid (Figure 2E) in unprocessed cooking oil shows a variable trend. At the beginning of the frying (1 time), there was an increase compared to those not treated, but over time the frying duration decreases. In otherwise, by adding turmeric extract shows a quite static level before frying to the tenth repetition treatment. It shows that turmeric extract can suppress the occurrence oxidation reaction. Meanwhile, Figure 2F depicts cis-11-14-eicosadienoic acid has increased in untreated cooking oil, while the unique by adding turmeric extract dramatically decrease levels. It is concluded cooking oil without treatment has shown increase unsaturated acid levels. The performance of turmeric extract has quite demonstrated efficiency in suppressing chemical reactions during frying treatment [39]. In addition, turmeric extract can function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during repeated frying. This will affect the composition of fatty acids contained in cooking oil. According to Kim and Clifton [40] showed that curcumin (diferuloylmethane) is the main secondary metabolite in turmeric extract, which is beneficial to the human body as antioxidant and anti-inflammatory properties. Curcumin, as a bioactive component, has been shown to be a broad biological action. To date, it has been reported that natural colored extracts are isolated from turmeric by various methods such as maceration, digestion, microwave, and infusion [21]. Turmeric varieties studied by Tanvir et al. [18] is a useful source of natural antioxidants and can provide protection against free radical damage. Curcumin can be used as a food additive and is also good for use as conventional medicine [41].4. Conclusions

This study reports the chemical composition of cooking oil consisting of saturated fatty acids, such as lauric acid, myristic acid, palmitic acid, and stearic acid. Whereas, the unsaturated fatty acids of elaidic acid, oleic acid, linoleic acid, cis-11-eicosedienoic acid, linolenic acid, and cis-11,14-eicosedienoic acid. The highest saturated fatty acid levels in cooking oil before frying

, are palmitic acid of 30.88%, whereas unsaturated fatty acids, namely oleic acid of 35.86%. The highest saturated

Plagiarism detected: **0,1%** https://www.researchgate.net/public...

id: **14**

fatty acid content in the oil

which has added turmeric extract before frying is palmitic acid of 28.5%, while unsaturated fatty acids like oleic acid of 32.97%. Turmeric extract added to cooking oil can function as an anticosidan so that it can inhibit thermal oxidation in cooking oil during repeated frying. The treatment of repeated frying affects the fatty acids contained in repeated cooking oils, both saturated fatty acids and unsaturated fatty acids. Funding

This research received no external funding

.Acknowledgments

We are grateful for the laboratory facilities from the

Plagiarism detected: **0,1%** http://psasir.upm.edu.my/id/eprint/...

id: 15

Department of Food Technology, Faculty of

Agriculture, Universitas Bosowa Makassar

, in conducting this research.Conflicts

Plagiarism detected: **0,11%** https://www.researchgate.net/public... + 4 resources!

id: 16

of Interest

The authors declare no conflict of

interest

.References

Prasetyo, J. Studi Pemanfaatan Minyak Jelantah Sebagai Bahan Baku Pembuatan Biodiesel. Jurnal Ilmiah

Teknik Kimia 2018, 2, 45-54, http://dx.doi.org/10.32493/jitk.v2i2.1679
http://dx.doi.org/10.32493/jitk.v2i2.1679.Gashaw, A.; Getasetegn, M. Chemistry and Health Impacts of Trans
Fatty Acids. Journal of Chemical Technology & Metallurgy 2018, 53, 159-169.Rule, D.C.; Liebman, M.; Liang, Y.
Bin Impact of different dietary fatty acids on plasma and liver lipids is influenced by dietary cholesterol in rats.
The Journal of Nutritional Biochemistry 1996, 7, 142-149, https://doi.org/10.1016/0955-2863(95)00192-1
https://doi.org/10.1016/0955-2863(95)00192-1.Falade, A.O.; Oboh, G.; Okoh, A.I.

Plagiarism detected: 0,16% https://www.researchgate.net/public...

Potential health implications of the consumption of thermally-oxidized cooking oils-a

Plagiarism detected: 0,11% https://www.researchgate.net/public...

id: 18

Polish journal of food and nutrition sciences

review.

2017, 67, 95-106, https://doi.org/10.1515/pjfns-2016-0028

https://doi.org/10.1515/pjfns-2016-0028. Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry-A review. Food bioscience 2015, 10, 26-41, https://doi.org/10.1016/j.fbio.2015.01.003

https://doi.org/10.1016/j.fbio.2015.01.003.Dewi, T.I.; Twilana, M. Bulk Cooking Oil Quality Improvement Using Adsorbent Activated Bentonite. UNESA Journal of Chemistry 2012, 1, 47-53.Sartika, R.A.D. Pengaruh suhu dan lama proses menggoreng (deep frying) terhadap pembentukan asam lemak trans. Makara Journal of Science 2009, 13, 23-28, https://doi.org/10.7454/mss.v13i1.354

https://doi/org/10.7454/mss.v13i1.354.Oluwaniyi, O.O.; Dosumu, O.O.; Awolola, G.V. Effect of cooking method on the proximate, amino acid and fatty acid compositions of Clarias gariepinus and Oreochromis niloticus. Journal of the Turkish Chemical Society Section A: Chemistry 2017, 4, 115-132,

https://doi.org/10.18596/jotcsa.53143

https://doi.org/10.18596/jotcsa.53143.Weber, J.; Bochi, V.C.; Ribeiro, C.P.; Victório, A. de M.; Emanuelli, T. Effect of different cooking methods on the oxidation, proximate and fatty acid composition

Plagiarism detected: 0,1% https://www.academicoo.com/artigo/d...

id: 19

of silver catfish (Rhamdia quelen) fillets

. Food Chemistry 2008, 106, 140-146, https://doi.org/10.1016/j.foodchem.2007.05.052 https://doi.org/10.1016/j.foodchem.2007.05.052.Choe, E.; Min, D.B.

Plagiarism detected: **0,11%** https://www.kosfaj.org/archive/view... + 2 resources!

id: **20**

Mechanisms and factors for edible oil oxidation.

Plagiarism detected: **0,11%** https://www.researchgate.net/public...

id: 21

Comprehensive reviews in food science and food

safety 2006, 5, 169-186, https://doi.org/10.1111/j.1541-4337.2006.00009.x

https://doi.org/10.1111/j.1541-4337.2006.00009.x.Akhtar, S.; Tanveer, M.; Ismail, A.; Ismail, T.; Hussain,

Plagiarism detected: 0,25% https://www.kosfaj.org/archive/view... + 2 resources!

id: 22

M. Safety evaluation of oil samples collected from different food points of multan city of Pakistan.

International Journal of Food and Allied Sciences 2018, 3, 43-48,

Plagiarism detected: **0,11%** https://www.kosfaj.org/archive/view...

id: 23

https://doi.org/10.21620/ijfaas.2017243-48

https://doi.org/10.21620/ijfaas.201724

3-48. Baba-Moussa, F.; Zynzendorf, Y.N.; Bonou, J.; Gbénou, J.; Moudachirou, M.; Kotchoni, S.O.; Toukourou, F.; Baba-Moussa, L. Kit reliability for controlling the quality of oils in food frying. Journal of Microbiology Biotechnology and Food Sciences 2020, 9, 121-134. Abriana, A.; Mahendradatta, M.; Djide, N.; Zainal, Z. Analysis of Trans Fatty Acid Content and Viscosity of the Repeteadly Used Frying Oil. International Journal of Agriculture System 2013, 1, 71-79. Abiona, O.O.; Awojide, S.H.; Anifowoshe, A.J.; Babalola, O.B.

Plagiarism detected: 0,29% https://www.researchgate.net/public... + 2 resources!

id: 24

Comparative study on effect of frying process on the fatty acid profile of vegetable oil and palm oil.

E-International Scientific Research Journal 2011, 3, 210-219. Kala, A.L.A.

Plagiarism detected: **0,25**% https://www.researchgate.net/public... + 4 resources!

id: 25

Cis-, trans-and saturated fatty acids in selected hydrogenated and refined vegetable oils in the Indian market.

Plagiarism detected: 0,11% https://www.researchgate.net/public... + 7 resources!

id: 26

Journal of the American Oil Chemists' Society

id: 27

https://doi.org/10.1007/s11746-012-2086-y https://doi.org/10.1007/s11746-012-2086-

y. Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The Effect of Coconut Oil Consumption on Cardiovascular Risk Factors:

Plagiarism detected: **0,1%** https://nutritionj.biomedcentral.co... + 10 resources!

id: 28

A Systematic Review and Meta-Analysis of

Clinical Trials. Circulation 2020, 141, 803-814, https://doi.org/10.1161/CIRCULATIONAHA.119.043052 https://doi.org/10.1161/CIRCULATIONAHA.119.043052.Lim, S.Y.; Abdul Mutalib, M.S.; Khaza'ai, H.; Chang, S.K. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. International Journal of Food Properties 2018, 21, 2428-2451,

https://doi.org/10.1080/10942912.2018.1522332

https://doi.org/10.1080/10942912.2018.1522332.Tanvir, E.M.; Hossen, M.; Hossain, M.; Afroz, R.; Gan, S.H.; Khalil, M.; Karim, N. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. Journal of Food Quality 2017, 2017, 1-8, https://doi.org/10.1155/2017/8471785

https://doi.org/10.1155/2017/8471785.Shankar, S.; Srivastava, R.K. Curcumin: structure, biology and clinical applications. In

: Nutrition, diet and cancer. Springer, 2012; pp. 413-457, https://doi.org/10.1007/978-94-007-2923-0_17 https://doi.org/10.1007/978-94-007-2923-0_17. Kim, J.H.; Yang, H.J.; Kim, Y.-J.; Park, S.; Lee, O.; Kim, K.S.; Kim, M.J. Korean turmeric is effective for dyslipidemia in human intervention study. Journal of Ethnic Foods 2016, 3, 213-221, https://doi.org/10.1016/j.jef.2016.08.006

https://doi.org/10.1016/j.jef.2016.08.006.Nabati, M.; Mahkam, M.; Heidari, H. Isolation and characterization of curcumin from powdered rhizomes of turmeric plant marketed in Maragheh city of Iran with soxhlet technique. Quarterly Journal of Iranian Chemical Communication 2014, 2, 236-243.Palve, Y.P.; Nayak, P.L. Curcumin: a wonder anti

-cancer drug. International Journal of Pharmacy and Biomedical Sciences 2012, 3, 60-69.Abriana, A.; Johannes, E. Turmeric extract as an antioxidant in repeatedly used cooking oil. International Journal of Scientific & Technology Research 2014, 3, 347-350.O'brien, R.D.

Plagiarism detected: 0,11% https://link.springer.com/article/1...

id: 29

Fats and oils: formulating and processing for

applications. CRC press, 2008.Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low-Carbon Technologies 2019, 14, 417-425, https://doi.org/10.1093/ijlct/ctz038

https://doi.org/10.1093/ijlct/ctz038.Bazina, N.; He, J. Analysis of fatty acid profiles of free fatty acids generated in deep-frying process.

Plagiarism detected: 0,1% https://www.researchgate.net/public... + 2 resources!

id: 30

Journal of food science and technology

2018, 55, 3085-3092, https://doi.org/10.1007/s13197-018-3232-9

https://doi.org/10.1007/s13197-018-3232-9. Kwon, S.Y.; Massey, K.; Watson, M.A.; Hussain, T.; Volpe, G.; Buckley, C.D.; Nicolaou, A.; Badenhorst, P. Oxidised metabolites of

Plagiarism detected: 0,1% https://www.sciencedirect.com/topic... + 2 resources!

id: 31

the omega-6 fatty acid linoleic acid

activate dFOXO. Life science alliance 2020, 3, 1-17, https://doi.org/10.26508/lsa.201900356 https://doi.org/10.26508/lsa.201900356.

Plagiarism detected: 0,62% https://www.researchgate.net/public... + 2 resources!

id: **32**

Suryani, S.; Sariani, S.; Earnestly, F.; Marganof, M.; Rahmawati, R.; Sevindrajuta, S.; Mahlia, T.M.I.; Fudholi, A. A Comparative Study of Virgin Coconut Oil, Coconut Oil and Palm Oil in Terms of Their Active Ingredients. Processes 2020, 8,

402-413,

Plagiarism detected: **0,08%** https://www.mdpi.com/2227-9717/8/4/...

id: 33

https://doi.org/10.3390/pr8040402

https://doi.org/10.339

0/pr8040402. Dayrit, F.M. The properties of lauric acid and their significance in coconut

Plagiarism detected: **0,13%** https://www.researchgate.net/public... + 7 resources!

id: **34**

oil. Journal of the American Oil Chemists' Society

2015, 92, 1-15, https://doi.org/10.1007/s11746-014-2562-7

https://doi.org/10.1007/s11746-014-2562-7.Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the components from goat's milk, recent advances for functional dairy products development and its implications on human health. Journal of Functional Foods 2019, 52, 243-257, https://doi.org/10.1016/j.jff.2018.11.017 https://doi.org/10.1016/j.jff.2018.11.017.Taufik, M.; Lioe, H.N.; Yuliana, N.D. Evaluation of Major Fatty Acids Determination in Palm Oil by Gas Chromatography-Flame Ionization Detection. Agritech 2016, 36, 308-316, https://doi.org/10.22146/agritech.16603

https://doi.org/10.22146/agritech.16603. van Rooijen, M.A.; Mensink, R.P. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers-A Systematic Review. Nutrients 2020, 12, 615-629, https://doi.org/10.3390/nu12030615

https://doi.org/10.3390/nu12030615. Petrović, M.; Kezić, N.; Bolanča, V. Optimization of the GC method for routine

Plagiarism detected: 0,1% https://www.researchgate.net/public...

id: 35

analysis of the fatty acid profile

in several food samples. Food Chemistry 2010, 122, 285-291, https://doi.org/10.1016/j.foodchem.2010.02.018 https://doi.org/10.1016/j.foodchem.2010.02.018. Alireza, S.; Tan, C.P.; Hamed, M.; Che Man, Y.B.

Plagiarism detected: 0,27% https://www.researchgate.net/public... + 2 resources!

id: 36

Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their

blends. International food research journal 2010, 17, 295-302.Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. Food and chemical toxicology 2010, 48, 2972-2979, https://doi.org/10.1016/j.fct.2010.07.036

https://doi.org/10.1016/j.fct.2010.07.036Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and cardiovascular disease. New England Journal of Medicine 2006, 354, 1601-1613, https://dx.doi.org/10.12669%2Fpjms.301.4525

https://dx.doi.org/10.12669%2Fpjms.301.4525. Taha, A.Y. Linoleic acid-good or bad for the brain? NPJ science of food 2020, 4, 1-6, https://doi.org/10.1038/s41538-019-0061-9

https://doi.org/10.1038/s41538-019-0061-9Białek, M.; Czauderna, M.; Białek, A. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. Journal of Animal and Feed Sciences 2017, 26, 3-17, https://doi.org/10.22358/jafs/68862/2017

https://doi.org/10.22358/jafs/68862/2017. Rebiai, A.; Belfar, M.L.; Mesbahi, M.A.; Nani, S.; Tliba, A.; Amara, D.G.; Chouikh,

Plagiarism detected: **0,11%** https://www.researchgate.net/public... + 4 resources!

id: **37**

A. Fatty acid composition of Algerian propolis.

Plagiarism detected: **0,1%** https://www.researchgate.net/public...

id: 38

Journal of Fundamental and Applied Sciences

2017, 9, 1656-1671.Kim, Y.; Clifton, P. Curcumin, cardiometabolic health and dementia.

Plagiarism detected: 0,11% https://www.mdpi.com/2227-9717/8/4/... + 3 resources!

id: 39

International journal of environmental research and public

health 2018, 15, https://doi.org/10.3390/ijerph15102093

https://doi.org/10.3390/ijerph15102093.Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H.

Plagiarism detected: **0,54%** https://nutritionj.biomedcentral.co... + 2 resources!

id: **40**

Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutrition journal 2017, 16, 68-

78,https://doi.org/10.1186/s12937-017-0293-y

https://doi.org/10.1186/s12937-017-0293-

y. https://doi.org/10.33263/BRIAC00.000000

https://biointerfaceresearch.com/ https://biointerfaceresearch.com/for each author please provide ORCIDPlease underline the lastname (family name) of each author. (The right order is Firstname La

ORCIDPlease underline the lastname (family name) of each author. (The right order is Firstname Lastname) Incomplete. Please clarify

Please add at least 10-15 references from the last 2 years (2019-2020).

Final Manuscript (Tanggal 25 Agustus 2020)

Sel, 25 Agu 2020 jam 13.22 🖈

Dear Alexandru Mihai GRUMEZESCU Editor in Chief of Biointerface Research in Applied Chemistry

Thank you very much for your Email.

We have checked and revised typos and some questions or suggestions from the Editor to improve our manuscript. Having addressed the issues raised, we feel that the quality of the paper is much better and hope you agree. We also thank Editors for a thorough reading of our manuscript and comments or suggestions that help us improve the manuscript.

For this reason, we hereby attach the Final Manuscript to be published in the Biointerface Research in the Field of Applied Chemistry.

We very much appreciate for your kind consideration on our manuscript in this journal and we are looking forwards to hearing from you at your earliest convenience.

Sincerely Yours,

Prof. Maulidiyah, Ph.D.

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232 - Southeast Sulawesi

Phone: +6281388327118

www.uho.ac.id

Biointerface Research in Applied Chemistry

Platinum Open Access Journal (ISSN: 2069-5837)

Article

Volume 10, Issue ..., 2020, ...- ...

https://doi.org/10.33263/BRIAC00.000000

Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a Potential Antioxidant Agent

Andi <u>Abriana</u> ^{1,*}, Hamsina <u>Hamsina</u> ², Suriana <u>Laga</u> ¹, Maulidiyah <u>Maulidiyah</u> ^{3,*}

- Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi – Indonesia.
- ² Department of Chemical Engineering, Faculty of Engineering, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi – Indonesia.
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Universitas Halu Oleo, Kota Kendari 93231 Southeast Sulawesi Indonesia
- * Correspondence: andi.abriana510@gmail.com (A.A.); maulid06@yahoo.com (M.M.);

Scopus Author ID 56648049800

Received: date; Revised: date; Accepted: date; Published: date

Abstract: The objective of this study to compare the fatty acids composition in cooking oil from repeated frying without added turmeric extract and added. The research design is testing the composition of fatty acids in repeated cooking oil using two types of treatment, namely cooking oil from frying without adding turmeric extract and cooking oil from frying with 0.03% turmeric extract added with 10 times frying repeat because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The analysis of fatty acids was conducted using gas chromatography. Based on these results that the fatty acid components were produced of saturated fatty acids, namely lauric acid, myristic acid, palmitic acid, and stearic acid, whereas unsaturated fatty acids also detected such as elaidic acid, oleic acid, linoleic acid, cis-11-eicosadienoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. The highest saturated fatty acid content in cooking oil before frying is palmitic acid (30.88%), whereas unsaturated fatty acid was oleic acid (35.86%). The highest content of saturated fatty acids in cooking oil has been added turmeric extract before frying is palmitic acid (28.5%), while unsaturated fatty acid of oleic acid was 32.97%.

Keywords: cooking oil; fatty acid; curcumin; chemical; content.

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cooking oil is one of the foodstuffs consumed by the majority of Indonesia's population with consumption levels reaching more than 2.5 million tons per year, or more than 12 kg/person/year, and also the dominant foodstuffs used by the community to process of feedstock into food made from palm oil [1]. As a food ingredient, palm oil has several advantages over other cooking oils, which contain carotene as an anti-cancer and tocopherol as a source of vitamin E3. In addition, palm oil can be a non-cholesterol cooking oil (low cholesterol levels) and contains fatty acids, which are the main components of fats consisting of saturated and unsaturated fatty acids [2,3]. The main components of saturated fatty acids in palm cooking oil are palmitic acid (C-16), oleic acid (C-18: monounsaturated), and linoleic acid (C-18: polyunsaturated), while the other components are in amounts, few are myristic acid (C-14) and stearic acid (C-18) [4]. Palm oil has a fatty acid composition, which is different from other cooking oils because it contains a composition of saturated acids that is almost the

Commented [A1]: for each author please provide ORCID Answer: The ORCID ID has been linked for each author

Commented [A2]: Please underline the lastname (family name) of each author. (The right order is Firstname Lastname)

same as unsaturated fatty acids, namely 50% saturated fatty acids and 50% unsaturated fatty acids [5].

In the community, cooking oil is widely used in food processing because it can function as a medium for conveying heat, adding a savory taste, adding nutritional value and calories in food, texture, and appearance of food becomes more attractive, and dry surface [6,7]. In addition, cooking oil can also be used for various food processing processes and is used in almost all types of food preparation such as frying, sautéing, grilling, baking, curling, rolling, and cooking by means of extrusion [8]. Frying is one way to cook raw food into cooked food using cooking oil. Deep frying processing requires a large amount of cooking oil in order to submerge entirely of food ingredients in cooking oil [5]. This condition encourages to use cooking oil repeatedly. The use of cooking oil the longer and repeatedly, the quality will decrease due to oxidation fatty acid. Cooking oil has been oxidized can cause poisoning and other negative effects on human health, but the tendency is that people still often use cooking oil repeatedly for economic purposes [9,10]. In addition to economic factors, it is also due to an increase in prices of basic necessities due to government policies to raise fuel prices, thus encouraging people both industry and households to use cooking oil repeatedly. In developing countries, there are still many repeated frying using cooking oil repeatedly with economic goals. Cooking oil has become an inseparable part of the modern food processing system so that its safety is very important for health institutions throughout the world to provide health insurance among the public in consuming cooking oil [11].

The quality of cooking oil is determined by its constituent fatty acid components, which are classes of saturated or unsaturated fatty acids. Saturated fatty acids have adverse effects on health; otherwise unsaturated fatty acids are a good source of nutrition for health. Saturated fatty acids have the potential to increase blood cholesterol, while unsaturated fatty acids can reduce blood cholesterol. In the cooking process, the chemical composition of cooking oil used has contained frying foodstuffs of unsaturated fatty acids and other byproducts that can reduce the quality of cooking oil so that it becomes toxic and often carcinogenic [12]. The composition of fatty acids in cooking oil changes physicochemical properties due to the thermal process during frying. The physicochemical properties of cooking oil used repeatedly changed at a frying temperature of 180°C and a frying time of 10 minutes by repeating the frying five times, namely the formation of trans fatty acids (chemical properties) and increased viscosity (physical properties) [13]. Some in vivo research results suggest that consumption of thermally oxidized cooking oil may be unhealthy because it can affect the lipid profile, namely an increase in low-density lipoprotein (LDL), a decrease in high-density lipoprotein (HDL) and an increase in cholesterol levels, a hematological system, white blood cell counts. (WBC), neutrophil and lymphocyte counts, obesity, coronary heart disease (CHD) and cardiovascular disease, increased blood pressure, atherosclerosis, kidney function, and can induce lipid peroxidation and oxidative stress that have been linked to the pathogenesis of various degenerative diseases [14,15]. Consumption of coconut oil produces LDL cholesterol, which is much higher than non-tropical oil [16].

Based on previous studies, the frying food with a deep frying method using a pan for 15 minutes. The results obtained are that the sample contains more unsaturated fatty acids than saturated, ie, palmitic acid is the main saturated fatty acid; oleic acid is the main unsaturated fatty acid with linoleic acid, linolenic acid, and palmitoleic acid in varying amounts [8]. Lim et al. has detected the falsification of fresh palm olein (FPO) with RCO using fatty acid compositions and Fourier-transform infrared (FTIR) spectral analysis combined with

chemometrics [17]. The FPO is added to the electric frying pan (DFT-6000) with a maximum capacity (5.5 L) and heated for about 20 minutes to reach a temperature of 180°C. The results show a tendency to decrease PUFAs, which is consistent with the increasing magnitude of changes in the level of counterfeiting, and this might be a good indicator to detect the occurrence of FPO forgery with RCO. Of the two results of this study, more specific testing of cooking oil without using additional elements.

Especially, the objective in this study is applied cooking oil with additional elements, namely turmeric extract obtained from the turmeric plant ($Curcuma\ longa$) as one of the sources of natural antioxidants that contain curcumin. Turmeric is a useful source of natural antioxidants agents and can provide significant protection against damage to cooking oil due to free radicals and can also prevent fat peroxidation [18,19]. Curcumin ($C_{21}H_{20}O_6$) in turmeric is an active component, hydrophobic yellow-orange polyphenols derived from turmeric rhizomes, and has been used in food as a stabilizer in jelly or as a natural dye in cheese and as an additive in traditional medicine [20–22]. According to Abriana and Johannes [23] showed that the addition of turmeric extract into cooking oil could reduce the formation of trans fatty acids and extend the time of use of cooking oil; and based on the results of the analysis of trans fatty acid levels, the best treatment is the addition of turmeric extract at a concentration of 0.03%. The objective to be achieved in this research is to compare the composition of fatty acids in cooking oil from repeated frying without added turmeric extract with cooking oil that has been added turmeric extract. The contribution of this research is more towards food safety and health for consuming fried food.

2. Materials and Methods

This study aims to test the composition of fatty acids in cooking oil from repeated frying using an experimental laboratory test with 2 (two) types of treatment, namely cooking oil from frying without adding turmeric extract and frying oil from frying with added turmeric extract with 10 repetitions of frying because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The main focus of research is to uncover the phenomenon of cooking oil due to repeated frying by analyzing fatty acid levels using gas chromatography.

2.1. Preparation of turmeric extract.

The use of turmeric extract is a consideration of its function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during frying because it contains curcumin, which is a yellow active component and can be extracted from turmeric rhizome. Turmeric is first selected and cleaned, then cut into small pieces or thinly. Then the turmeric is weighed as much as 100 grams for preparation of extraction. 100 grams of turmeric is dried in an oven at 100°C for 1 hour. After drying, then put into a three-neck flask plus 98% glacial acetic acid solvent that has been diluted with a ratio of 1:1 with a total volume of 300 mL solvent. The heater is turned on, and the return cooler is activated. The zero time of extraction is determined when glacial acetic acid reaches its boiling point (118.1°C) and ends at the specified time for 75 minutes. The extraction results are cooled and filtered using filter paper. The filtrate is distilled while the residue is removed. The filtrate obtained from the extraction was put into a distillation flask to separate the turmeric extract from the solvent. The heater is turned on, and the result is solvent and residue. The residue is dried in an oven at 120°C to remove the residual glacial acetic acid

that is still present in turmeric extract. After that, weighing is done until a constant weight is obtained. Turmeric extract was added to cooking oil before frying food with a concentration of 0.03% [23].

2.2. Frying of food Test.

Food frying is done using the deep frying method by using an electric frying kettle equipped with a temperature and time regulator. The frying process starts by putting fresh cooking oil into the frying boiler as much as 3.5 liters (maximum capacity), then the kettle is heated to a temperature of 180°C. Food is fried until cooked within 10 minutes and made as little as possible stirring to reduce the flow of convection in oil and oxidation reactions due to the aeration process. The analysis was carried out on fresh oil (oil that has not been used for frying foodstuffs) as control and on two oil samples, namely cooking oil from frying without added turmeric extract and cooking oil from frying with added turmeric extract. The oil used for repeating the frying is the same oil (it is not replaced, and no additional volume of fresh oil is made). Frying is repeated 10 times with the same temperature and time of frying. Cooking oil samples were taken immediately after the frying process as much as 200 mL, then the oil in the kettle was allowed to cool down and continued with the next frying which is frying first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth [23]. Samples taken for analysis of fatty acid content are samples from the repetition of the first, fifth, and tenth frying.

2.3. Characterization of Cooking Oil.

First, the cooking oil is hydrolyzed into fatty acids, then transformed into a more volatile ester form. The transformation is carried out by methylation to obtain fatty acid methyl esters (FAME); Furthermore, this FAME was analyzed with GC-2010 (Gas Chromatograph) Plus Serial No. gas chromatography. C11804700336 Shimadzu Corp., using standard methods from The Association of Official Analytical Chemists (AOAC). The analysis starts by injecting of solvent as much as 1.0 μL into the column to obtain a baseline. If the carrier gas flow and heating system are perfect, the peak of the solvent will appear in less than 1 minute. After obtaining the baseline, then proceed by injecting 1 μL of the standard FAME mixture (Supelco TM 37 Component FAME Mix Catalog No. 47885-U, Bellefonte, PA, USA). When all the peaks are out, the prepared sample is injected as much as 1.0 μL . Retention times and peak samples were measured for each component.

3. Results and Discussion

In this study, we produced the component of saturated fatty acids in cooking oil namely lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), and stearic acid (C18:0) while acids Unsaturated fats such as elaidic acid (C18:1n9t), oleic acid (C18:1n9c), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), and cis-11,14-eicosadienoic acid (C20:2). The highest saturated fatty acid content in fresh cooking oil (as control) is palmitic acid (C16:0) meanwhile, unsaturated fatty acid is oleic acid (C18:1n9c). The higher content of palmitic acid (C16:0) in cooking oil is the major component of palmitic acid in palm oil [11]. The HPLC analysis has exhibited that cooking oil based on palm oil contains the high saturated fatty acid like palmitic acid 30.88% and unsaturated fatty acids namely oleic acid 35.86%, linoleic acid 10.41%, stearic acid 3.43%, mistic acid 0.76%; lauric acid 0.18%; linolenic acid

0.18%; cis-11-eicosenoic acid 0.14%; elaidic acid 0.09% and cis-11,14-eicosadienoic acid 0.07% (Table 1).

Table 1. Composition of fatty Acids from recycled frying cooking oil.

Treatment	Fatty Acids	Frying Treatment (time) [%]				Standards based on O'Brien (2003) [24]
		0	1	5	10	
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.18 ±0.003	0.18 ±0.010	0.19 ±0.015	0.19 ±0.015	0.1-1.0
	Myristic Acid, C14:0	0.76 ±0.010	0.89 ±0.012	0.86 ±0.036	0.82 ±0.017	0.9-1.5
	Palmitic Acid, C16:0	30.88 ± 0.080	34.83 ±0.555	34.00 ±1.167	32.90 ±1.795	41.8-46.8
	Stearic Acid, C18:0	3.43 ±0.035	3.75 ±0.115	3.73 ±0.075	3.68 ±0.367	4.5-5.1
	Unsaturated Fatty Acids					
Untreated	Elaidic Acid, C18:1n9t	0.09 ±0.010	0.09 ±0.006	0.11 ±0.001	0.11 ±0.001	<1
Cooking	Oleic Acid, C18:1n9c	35.86 ±0.145	40.47 ±0.746	40.18 ±0.812	38.52 ±2.807	37.3-40.8
Oil	Linoleic Acid, C18:2n6c	10.41 ±0.02	11.56 ±0.165	11.41 ±0.214	10.61 ±0.735	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ±0.006	0.13 ±0.006	0.13 ±0.006	0.13 ±0.015	-
	Linolenic Acid, C18:3n3	0.18 ±0.005	0.20 ±0.010	0.19 ±0.003	0.17 ±0.006	<1.5
	Cis-11,14-Eicosedienoic Acid, C20:2	0.07 ±0.001	0.09 ±0.021	0.10 ±0.017	0.09 ±0.015	-
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.14 ±0.001	0.10 ±0.006	0.11 ±0.006	0.11 ±0.012	0.1-1.0
	Myristic Acid, C14:0	0.77 ±0.010	0.75 ±0.016	0.73 ±0.021	0.81 ±0.051	0.9-1.5
	Palmitic Acid, C16:0	28.5 ±0.580	29.49 ±0.640	29.25 ±0.957	28.75 ±3.788	41.8-46.8
	Stearic Acid, C18:0	2.96 ±0.050	3.44 ±0.081	3.47 ±0.090	3.61 ±0.182	4.5-5.1
Cooking	Unsaturated Fatty Acids					
Oil + 0.03%	Elaidic Acid, C18:1n9t	0.07 ±0.001	0.09 ±0.006	0.09 ±0.006	0.09 ±0.006	<1
Turmeric	Oleic Acid, C18:1n9c	32.97 ±0.560	33.24 ±1.025	34.05 ±1.100	35.43 ±1.974	37.3-40.8
	Linoleic Acid, C18:2n6c	8.89 ±0.160	9.74 ±0.211	9.94 ±0.495	10.19 ±0.560	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ±0.006	0.11 ±0.006	0.12 ±0.001	0.12 ±0.006	-
	Linolenic Acid, C18:3n3	0.18 ±0.003	0.18 ±0.015	0.18 ±0.017	0.18 ±0.012	<1.5
	Cis-11,14-Eicosedienoic Acid, C20:2	0.06 ±0.001	0.05 ±0.010	0.04 ±0.010	0.06 ±0.010	-

In addition, we added the turmeric extract 0.03% into cooking oil to suppress oxidation reaction shows that the high saturated fatty acid such as palmitic acid 28.5% and unsaturated fatty acids content of oleic acid 32.97%, linoleic acid 8.89%, stearic acid 2.96%, myristic acid 0.77%, linolenic acid 0.18%; lauric acid 0.14%, cis-11-eicosenoic acid 0.14%; elaidic acid 0.07% and cis-11,14-eicosadienoic acid 0.06% (Table 1). The composition of most fatty acids in recycled cooking oil (RCO) is in the range according to Codex standards, except for C8:0, C10:0, C11:0, C11:0, trans C18:1, and polyunsaturated fatty acids (PUFAs), C20:5 [17]. According to Awogbemi [25] reported that palm oil contained 87.7% unsaturated fatty acids and 12.3% saturated fatty acids. Based on these results also show the variation of cooking oil used and type of food fried greatly affect the properties and composition of fatty acids. Overall, in fresh cooking oil was contained 63.16% linoleic acid 20.72%, linolenic acid 10.53%, stearic acid 5.26%, and the smallest component was palmitic acid 0.33% [26].

3.1. Saturated fatty acids.

The saturated fatty acid has been investigated into repeated frying cooking oil based on palm oil; we found the lauric acid, myristic acid, palmitic acid, and stearic acid compounds. Certainly, palm oil as feedstock to produce cooking oil contains 92% saturated fatty acids,

including 48% lauric acid, myristic acid 20%, and palmitic acid 9%, with monounsaturated fatty acids 6% and polyunsaturated fatty acids 1.7% [27]. Figure 1 extracted from Table 1 to observe the range composition and an upward or downward trend in each composition of organic constituents in cooking oil. Figure 1 was recurring frying oil without added turmeric extract showed that before fried the lauric acid of 0.18% (0 times), first frying 0.18% (1 time), fifth frying 0.19% (5 times) and tenth frying 0.19% (10 times). We also compare each organic constituents in cooking oil with results that have been studied from O'Brien and Richard D. [24] as standard organic constituents in fats and oils. Based on frying treatment, the lauric acid frequency looks to increase; it means that the repetition of a frying treatment can increase the lauric acid compound. Then it is compared with standard 0.1-1.0 shows that do not exceed the specified standard.

Meanwhile, the cooking oil has been added turmeric extract 0.03% contains lauric acid of 0.14% (0 times), 0.10% (1 time), 0.11% (5 times) and 0.11% (10 times). The lauric acid frequency was decreased in the first frying, then increase in the fifth and tenth frying (+0.01). By adding 0.03% turmeric extract can reduce the lauric acid compound, then it is compared with a standard data where it does not exceed the predetermined. The lauric acid is also mostly found in virgin coconut oil (VCO), which consists of 90% medium-chain fatty acids (dominated by lauric acid, which is 45-55% and 10% long-chain fatty acids). If it is compared with oil palm, VCO has a higher of lauric acid content, which is 54.06%, meanwhile in palm oil of 0.10%. Lauric acid plays a role in maintaining health, among others, functions to kill various types of microbes derived from fatty acids, to increase metabolic activity, and protect the body from disease and accelerate healing [28]. Among saturated fatty acids, lauric acid has been shown to contribute the least to fat accumulation [29]. Likewise, myristic acid has not exceeded the predetermined standard. Myristic acid (C14:0) is a fatty acid that is found in palm kernel oil and coconut oil, which can increase low-density lipoprotein (LDL) cholesterol levels, but it is a minor group in food. It is a long-chain saturated fatty acid (14:0) and also one of the fattiest acids found in milk fat (above 10%) [30].

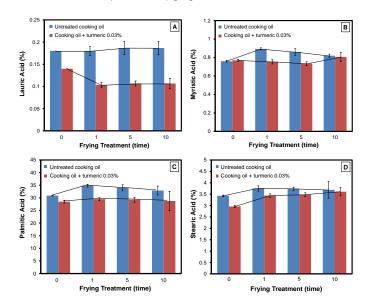
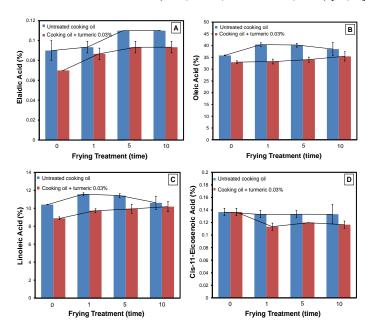


Figure 1. Saturated fatty acids component, (A) Lauric acid, (B) Myristic acid, (C) Palmitic acid and (D) Stearic

Figure 1C the palmitic acid was quite increased along with the repetition of the frying, and it's still lower than the standard which has been specified (41.8-46.8). Palmitic acid is the main fatty acid in palm oil [31]. Palmitic acid is also the main component of saturated fatty acids in food, which contains vegetable oils 6-10% and can increase LDL cholesterol levels. The presence of palmitic acid in cooking oil can be used as an indicator to detect falsification of fresh palm oil (FPO) with RCO using fatty acid composition analysis (FAC) [17]. Figure 1D also exhibited of the stearic acid compound can be seen that has increased along with the repetition of the frying and compared with a standard in a range of 4.5-5.1 where the saturated fatty acid of stearic acid is still lower from predetermined standards. It is a major component of various types of fat with different amounts, such as animal fat (beef fat) containing 15-20% and only a little in vegetable oil, 4-5% [31]. Stearic acid lowers LDL and HDL cholesterol concentrations when compared with palmitic acid because these fatty acids are quickly converted to monounsaturated fatty acids and oleic acid interesterification of fats rich in palmitic acid or stearic acid does not appear to affect serum lipid fasting and (apo) lipoprotein [32].


Based on saturated fatty acid results and compared with standard fats and oils, we discover that the oil from repeated frying produces saturated fatty acids that do not exceed the specified standard. This means that repeated frying oil based on palm oil is still safe for consumption because of all the saturated fatty acids found within the reasonable standard range, though that can raise cholesterol levels (myristic acid and palmitic acid). In vegetable oils such as palm oil is dominated by more carbon atoms, whereas in animal oils are odd carbon atoms and contain more polyunsaturated fatty acids (PUFA) [33]. Cooking oil with high saturated fatty acid content will affect the stability of food items that are fried during frying [34,35]. In addition, the high content of fatty acids causes oil to be easily damaged during cooking processing because the oil will be heated continuously at high temperatures and direct contact with oxygen in the surrounding air, which facilitates the oxidation reaction to the oil. According to Baba-Moussa et al. [12], an increase in temperature followed by a long heating time indicates that an increase in the fatty acid component forms triglycerides. The result of triglyceride hydrolysis will produce saturated and unsaturated fatty acids based on the presence or absence of carbon chain double bonds in the molecule.

3.2. Unsaturated fatty acids.

The presence of organic constituents in repeated frying oil has been examined that it contains elaidic acid, oleic acid, linoleic acid, cis-11-eicosenoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. Based on Figure 2A the content of untreated cooking oil from elaidic acid showed that 0.09% (0 times), 0.09% (1 time), 0.11% (5 times) and 0.11% (10 times), while the frying oil added 0.03% turmeric extract showed the treatment before frying 0.07% (0 times), 0.09% (1 time), 0.09% (5 times) and 0.09% (10 times). If seen from the frequency of elaidic acid (Figure 2A) that repeated frying can increase the level of elaidic acid and compare with standard <1 that it does not exceed the specified standard. This is because trans fatty acids (TFA) in elaidic acid are unsaturated fatty acids with at least one double bond in the form of trans configuration that can occur naturally from ruminants-based meat and dairy products, or artificially through partial hydrogenation of vegetable oils in industry food processing [36]. Sartika also reported that trans fatty acids (elaidate) were only formed after the second

repetition of deep-frying, and their levels increased with the repeated use of oil. Based on the initial formation of trans fatty acids, the frying process should be done on medium heat (<200°C), and the cooking oil used should not exceed 2 (two) repetitions. Not so in the oleic acid compound (Figure 2B) shows a tendency to vary, if it is compared with the standard of 37.3-40.8. Whereas the recycled frying oil added with 0.03% turmeric extract showed an increase along with the repetition of the frying and when compared with the standard 37.3-40.8. These results indicate that oleic acid is still lower than the standard value.

Furthermore, the content of linoleic acid (Figure 2C) in untreated cooking oil showed the same conditions varying when compared with the standard of 9.1-11.0. One that met the standard was the treatment before the tenth frying and frying, while those that do not meet the standards in the first and fifth frying treatment. Then, it compared with frying cooking oil added 0.03% turmeric extract showed an increase along with the repetition of the frying and compared with the standard the first, fifth, and tenth frying have met the standards. Meanwhile, which did not meet the standards in the treatment before the addition of turmeric extract such as the first and fifth frying. This result showed that repeated frying could increase the levels of linoleic acid in the oil from repeated frying by adding 0.03% turmeric extract. It is due to the conjugation of linolenic acid isomer refers to a group of positions and geometrical isomers of omega-3- α -linolenic acid essential acids (cis-9, cis-12, cis-15 C18: 3; ALA) [37,38].

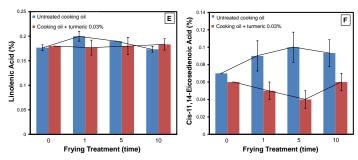


Figure 2. Unsaturated fatty acids component (A) elaidic acid, (B) oleic acid, (C) linoleic acid, (D) cis-11-eicosenoic acid, (E) linolenic acid, and (F) cis-11,14-eicosadienoic acid.

The content of cis-11-eicosenoic acid (Figure 2D) in untreated cooking oil and added 0.03% turmeric extract had decreased levels caused by slow oxidation reactions against cis-11eicosenoic acid. The frequency of linolenic acid (Figure 2E) in unprocessed cooking oil shows a variable trend. At the beginning of the frying (1 time), there was an increase compared to those not treated, but over time the frying duration decreases. In otherwise, by adding turmeric extract shows a quite static level before frying to the tenth repetition treatment. It shows that turmeric extract can suppress the occurrence oxidation reaction. Meanwhile, Figure 2F depicts cis-11-14-eicosadienoic acid has increased in untreated cooking oil, while the unique by adding turmeric extract dramatically decrease levels. It is concluded cooking oil without treatment has shown increase unsaturated acid levels. The performance of turmeric extract has quite demonstrated efficiency in suppressing chemical reactions during frying treatment [39]. In addition, turmeric extract can function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during repeated frying. This will affect the composition of fatty acids contained in cooking oil. According to Kim and Clifton [40] showed that curcumin (diferuloylmethane) is the main secondary metabolite in turmeric extract, which is beneficial to the human body as antioxidant and anti-inflammatory properties. Curcumin, as a bioactive component, has been shown to be a broad biological action. To date, it has been reported that natural colored extracts are isolated from turmeric by various methods such as maceration, digestion, microwave, and infusion [21]. Turmeric varieties studied by Tanvir et al. [18] is a useful source of natural antioxidants and can provide protection against free radical damage. Curcumin can be used as a food additive and is also good for use as conventional medicine [41].

4. Conclusions

This study reports the chemical composition of cooking oil consisting of saturated fatty acids, such as lauric acid, myristic acid, palmitic acid, and stearic acid. Whereas, the unsaturated fatty acids of elaidic acid, oleic acid, linoleic acid, cis-11-eicosedienoic acid, linolenic acid, and cis-11,14-eicosedienoic acid. The highest saturated fatty acid levels in cooking oil before frying, are palmitic acid of 30.88%, whereas unsaturated fatty acids, namely oleic acid of 35.86%. The highest saturated fatty acid content in the oil which has added turmeric extract before frying is palmitic acid of 28.5%, while unsaturated fatty acids like oleic acid of 32.97%. The high saturated fatty acid content in oil cooking before the frying process is palmitic acid of 30.88%, whereas the unsaturated fatty acid is oleic acid of 32.97%. Turmeric

Commented [A3]: Incomplete. Please clarify

extract added to cooking oil can function as an anticosidan so that it can inhibit thermal oxidation in cooking oil during repeated frying. The treatment of repeated frying affects the fatty acids contained in repeated cooking oils, both saturated fatty acids and unsaturated fatty acids.

Funding

This research received no external funding.

Acknowledgments

We are grateful for the laboratory facilities from the Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, in conducting this research.

Conflicts of Interest

The authors declare no conflict of interest.

References

- Prasetyo, J. Studi Pemanfaatan Minyak Jelantah Sebagai Bahan Baku Pembuatan Biodiesel. *Jurnal Ilmiah Teknik Kimia* 2018, 2, 45–54, http://dx.doi.org/10.32493/jitk.v2i2.1679.
- Gashaw, A.; Getasetegn, M. Chemistry and Health Impacts of Trans Fatty Acids. Journal of Chemical Technology & Metallurgy 2018, 53, 159–169.
- 3. Astrup, A.; Bertram, H.C.S.; Bonjour, J.P.; de Groot, L.C.P.; de Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; Lamarche, B.; Lecerf, J.M.; Legrand, P.; McKinley, M.; Micha, R.; Michalski, M.C.; Mozaffarian, D.; SoedamahMuthu, S.S. WHO draft guidelines on dietary saturated and trans fatty acids: time for a new approach?. *British Medical Journal*, 2019, 366, 14137, https://doi.org/10.1136/bmj.14137.
- Falade, A.O.; Oboh, G.; Okoh, A.I. Potential health implications of the consumption of thermally-oxidized cooking oils—a review. *Polish journal of food and nutrition sciences* 2017, 67, 95–106, https://doi.org/10.1515/pjfns-2016-0028.
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry–A review. Food bioscience 2015, 10, 26–41, https://doi.org/10.1016/j.fbio.2015.01.003.
- Dewi, T.I.; Twilana, M. Bulk Cooking Oil Quality Improvement Using Adsorbent Activated Bentonite. *UNESA Journal of Chemistry* 2012, 1, 47–53.
- Dalbhagat, C.G.; Mahato, D.K.; Mishra, H.N. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. *Trends in Food Science & Technology*, 2019, 85, 226-240. https://doi.org/10.1016/j.tifs.2019.01.001.
- Oluwaniyi, O.O.; Dosumu, O.O.; Awolola, G.V. Effect of cooking method on the proximate, amino acid and fatty acid compositions of Clarias gariepinus and Oreochromis niloticus. *Journal of the Turkish Chemical Society Section A: Chemistry* 2017, 4, 115–132, https://doi.org/10.18596/jotcsa.53143.
- Multari, S.; Marsol-Vall, A.; Heponiemi, P.; Suomela, J.P.; Yang, B. Changes in the volatile profile, fatty acid composition and other markers of lipid oxidation of six different vegetable oils during short-term deepfrying. Food Research International, 2019, 122, 318-329. https://doi.org/10.1016/j.foodres.2019.04.026.
- Sottero, B.; Leonarduzzi, G.; Testa, G.; Gargiulo, S.; Poli, G.; Biasi, F. Lipid oxidation derived aldehydes and oxysterols between health and disease. European journal of lipid science and technology, 2019, 121(1), 1700047. https://doi.org/10.1002/ejlt.201700047.
- Akhtar, S.; Tanveer, M.; Ismail, A.; Ismail, T.; Hussain, M. Safety evaluation of oil samples collected from different food points of multan city of Pakistan. *International Journal of Food and Allied Sciences* 2018, 3, 43–48, https://doi.org/10.21620/ijfaas.2017243-48.
- Baba-Moussa, F.; Zynzendorf, Y.N.; Bonou, J.; Gbénou, J.; Moudachirou, M.; Kotchoni, S.O.; Toukourou, F.; Baba-Moussa, L. Kit reliability for controlling the quality of oils in food frying. *Journal of Microbiology Biotechnology and Food Sciences* 2020, 9, 121–134.
- Abriana, A.; Mahendradatta, M.; Djide, N.; Zainal, Z. Analysis of Trans Fatty Acid Content and Viscosity of the Repeteadly Used Frying Oil. *International Journal of Agriculture System* 2013, 1, 71–79.
- Pena-Bautista, C.; Vento, M.; Baquero, M.; Chafer-Pericas, C. Lipid peroxidation in neurodegeneration. Clinica Chimica Acta, 2019, 497, 178-188. https://doi.org/10.1016/j.cca.2019.07.037.
- 5. Barati, E.; Nikzad, H.; Karimian, M. Oxidative stress and male infertility: Current knowledge of

- pathophysiology and role of antioxidant therapy in disease management. *Cellular and Molecular Life Sciences*, **2020**, *77*, 93–113. https://doi.org/10.1007/s00018-019-03253-8.
- Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The Effect of Coconut Oil Consumption on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Clinical Trials. *Circulation* 2020, 141, 803–814, https://doi.org/10.1161/CIRCULATIONAHA.119.043052.
- Lim, S.Y.; Abdul Mutalib, M.S.; Khaza'ai, H.; Chang, S.K. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. *International Journal of Food Properties* 2018, 21, 2428–2451, https://doi.org/10.1080/10942912.2018.1522332.
- Tanvir, E.M.; Hossen, M.; Hossain, M.; Afroz, R.; Gan, S.H.; Khalil, M.; Karim, N. Antioxidant properties
 of popular turmeric (Curcuma longa) varieties from Bangladesh. *Journal of Food Quality* 2017, 2017, 1–8,
 https://doi.org/10.1155/2017/8471785.
- Shankar, S.; Śrivastava, R.K. Curcumin: structure, biology and clinical applications. In: Nutrition, diet and cancer. Springer, 2012; pp. 413–457, https://doi.org/10.1007/978-94-007-2923-0_17.
- Kim, J.H.; Yang, H.J.; Kim, Y.-J.; Park, S.; Lee, O.; Kim, K.S.; Kim, M.J. Korean turmeric is effective for dyslipidemia in human intervention study. *Journal of Ethnic Foods* 2016, 3, 213–221, https://doi.org/10.1016/j.jef.2016.08.006.
- Nabati, M.; Mahkam, M.; Heidari, H. Isolation and characterization of curcumin from powdered rhizomes
 of turmeric plant marketed in Maragheh city of Iran with soxhlet technique. *Quarterly Journal of Iranian Chemical Communication* 2014, 2, 236–243.
- Palve, Y.P.; Nayak, P.L. Curcumin: a wonder anti-cancer drug. *International Journal of Pharmacy and Biomedical Sciences* 2012, 3, 60–69.
- Abriana, A.; Johannes, E. Turmeric extract as an antioxidant in repeatedly used cooking oil. *International Journal of Scientific & Technology Research* 2014, 3, 347–350.
- 24. O'brien, R.D. Fats and oils: formulating and processing for applications. CRC press, 2008.
- Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. *International Journal of Low-Carbon Technologies* 2019, 14, 417–425, https://doi.org/10.1093/ijlct/ctz038.
- Bazina, N.; He, J. Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. *Journal of food science and technology* 2018, 55, 3085–3092, https://doi.org/10.1007/s13197-018-3232-9.
 Kwon, S.Y.; Massey, K.; Watson, M.A.; Hussain, T.; Volpe, G.; Buckley, C.D.; Nicolaou, A.; Badenhorst,
- Kwon, S.Y.; Massey, K.; Watson, M.A.; Hussain, T.; Volpe, G.; Buckley, C.D.; Nicolaou, A.; Badenhorst, P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. *Life science alliance* 2020, 3, 1–17, https://doi.org/10.26508/lsa.201900356.
- Suryani, S.; Sariani, S.; Earnestly, F.; Marganof, M.; Rahmawati, R.; Sevindrajuta, S.; Mahlia, T.M.I.; Fudholi, A. A Comparative Study of Virgin Coconut Oil, Coconut Oil and Palm Oil in Terms of Their Active Ingredients. *Processes* 2020, 8, 402–413, https://doi.org/10.3390/pr8040402.
- Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. *Journal of the American Oil Chemists' Society* 2015, 92, 1–15, https://doi.org/10.1007/s11746-014-2562-7.
- Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the components from goat's milk, recent advances for functional dairy products development and its implications on human health. *Journal of Functional Foods* 2019, 52, 243–257, https://doi.org/10.1016/j.jff.2018.11.017.
- 31. Taufik, M.; Lioe, H.N.; Yuliana, N.D. Evaluation of Major Fatty Acids Determination in Palm Oil by Gas Chromatography-Flame Ionization Detection. *Agritech* **2016**, *36*, 308–316, https://doi.org/10.22146/agritech.16603.
- van Rooijen, M.A.; Mensink, R.P. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers-A Systematic Review. *Nutrients* 2020, 12, 615–629, https://doi.org/10.3390/nu12030615.
- 33. Svetashev, V.I.,; Kharlamenko, V.I. Fatty Acids of Abyssal Echinodermata, the Sea Star Eremicaster vicinus and the Sea Urchin Kamptosoma abyssale: A New Polyunsaturated Fatty Acid Detected, 22: 6 (n-2). *Lipids*, **2020**, *55*(3), 291-296. https://doi.org/10.1002/lipd.12227.
- Woo, Y.; Kim, M.J.; Lee, J. Prediction of oxidative stability in bulk oils using dielectric constant changes. Food chemistry, 2019, 279, 216-222. https://doi.org/10.1016/j.foodchem.2018.12.012.
- Yan, C.; McClements, D.J.; Zou, L.; Liu, W. A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in β-carotene stability and bioaccessibility. Food & function, 2019, 10(9), 5446-5460. https://doi.org/10.1039/C9F000508K.
- Sanchez, J.L.; Pereira, S.B.G.; Tanamati, A.; Tanamati, A.A.C. Monitoring industrial hydrogenation of soybean oil using self-organizing maps. *Emirates Journal of Food and Agriculture*, 2019, 779-787. https://doi.org/10.9755/ejfa.2019.v31.i10.2019.
- Taha, A.Y. Linoleic acid–good or bad for the brain? NPJ science of food 2020, 4, 1–6, https://doi.org/10.1038/s41538-019-0061-9
- Białek, M.; Czauderna, M.; Białek, A. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. *Journal of Animal and Feed Sciences* 2017, 26, 3–17, https://doi.org/10.22358/jafs/68862/2017.
- 89. Rebiai, A.; Belfar, M.L.; Mesbahi, M.A.; Nani, S.; Tliba, A.; Amara, D.G.; Chouikh, A. Fatty acid

- composition of Algerian propolis. *Journal of Fundamental and Applied Sciences* **2017**, *9*, 1656–1671. Kim, Y.; Clifton, P. Curcumin, cardiometabolic health and dementia. *International journal of environmental* 40.
- research and public health 2018, 15, https://doi.org/10.3390/ijerph15102093.

 Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. *Nutrition journal* 2017, 16, 68–78, https://doi.org/10.1186/s12937-017-0293-y.

Round 2 Reviewer Report

Professor Editor, Biointerface Research in Applied Chemistry

August 25, 2020

Dear Professor.

We would like to say thank you very much for your email regarding the revision of our manuscript entitled "Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a Potential Antioxidant Agent" submitted as an Article to "Biointerface Research in Applied Chemistry". We also would like to say thank you to the referee for the comments and suggestions on the manuscript.

We revised the manuscript by fully considering the referee's comments. The revision that has been made in the article is indicated by reddened in the paper.

In this revision, we have thoroughly examined the English of the paper by asking the expert. The revision has been highlighted in the paper. In addition, in alignment with our institution's policy, we must include two corresponding authors for this submission. As a result, we have updated the manuscript to include the corresponding author details.

In the following, we enlist our responses to the editor and referee's comments.

Corresponding author,

Prof. Dr. Maulidiyah

No.	Reviewer Comment/Sugestion	Authors Action/Response		
1	for each author please provide ORCID	Thank you for your response.		
		The ORCID ID has been linked		
		for each author		
2	Conclusion (Incomplete, please clarify).	Thanks for your sugestion.		
	The highest saturated fatty acid content in the oil	The high saturated fatty acid		
	which has added turmeric extract before frying is	content in oil cooking before the		
	palmitic acid of 28.5%, while unsaturated fatty	frying process is palmitic acid of		
	acids like oleic acid of 32.97%	30.88%, whereas the unsaturated		
		fatty acid is oleic acid of 32.97%.		

Article

Volume 10, Issue ..., 2020, ...- ...

https://doi.org/10.33263/BRIAC00.000000

Identification of Organic Constituents in Cooking Oil by Adding Turmeric as a Potential Antioxidant Agent

Andi Abriana ^{1,*} , Hamsina Hamsina ², Suriana Laga ¹, Maulidiyah Maulidiyah ^{3,*}

- Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi Indonesia.
- Department of Chemical Engineering, Faculty of Engineering, Universitas Bosowa Makassar, Kota Makassar 90231, South Sulawesi – Indonesia.
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Universitas Halu Oleo, Kota Kendari 93231 Southeast Sulawesi Indonesia
- * Correspondence: andi.abriana510@gmail.com (A.A.); maulid06@yahoo.com (M.M.);

Scopus Author ID 56648049800

Received: date; Revised: date; Accepted: date; Published: date

Abstract: The objective of this study to compare the fatty acids composition in cooking oil from repeated frying without added turmeric extract and added. The research design is testing the composition of fatty acids in repeated cooking oil using two types of treatment, namely cooking oil from frying without adding turmeric extract and cooking oil from frying with 0.03% turmeric extract added with 10 times frying repeat because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The analysis of fatty acids was conducted using gas chromatography. Based on these results that the fatty acid components were produced of saturated fatty acids, namely lauric acid, myristic acid, palmitic acid, and stearic acid, whereas unsaturated fatty acids also detected such as elaidic acid, oleic acid, linoleic acid, cis-11-eicosadienoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. The highest saturated fatty acid content in cooking oil before frying is palmitic acid (30.88%), whereas unsaturated fatty acid was oleic acid (35.86%). The highest content of saturated fatty acids in cooking oil has been added turmeric extract before frying is palmitic acid (28.5%), while unsaturated fatty acid of oleic acid was 32.97%.

Keywords: cooking oil; fatty acid; curcumin; chemical; content.

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cooking oil is one of the foodstuffs consumed by the majority of Indonesia's population with consumption levels reaching more than 2.5 million tons per year, or more than 12 kg/person/year, and also the dominant foodstuffs used by the community to process of feedstock into food made from palm oil [1]. As a food ingredient, palm oil has several advantages over other cooking oils, which contain carotene as an anti-cancer and tocopherol as a source of vitamin E3. In addition, palm oil can be a non-cholesterol cooking oil (low cholesterol levels) and contains fatty acids, which are the main components of fats consisting of saturated and unsaturated fatty acids [2,3]. The main components of saturated fatty acids in palm cooking oil are palmitic acid (C-16), oleic acid (C-18: monounsaturated), and linoleic acid (C-18: polyunsaturated), while the other components are in amounts, few are myristic acid (C-14) and stearic acid (C-18) [4]. Palm oil has a fatty acid composition, which is different from other cooking oils because it contains a composition of saturated acids that is almost the

same as unsaturated fatty acids, namely 50% saturated fatty acids and 50% unsaturated fatty acids [5].

In the community, cooking oil is widely used in food processing because it can function as a medium for conveying heat, adding a savory taste, adding nutritional value and calories in food, texture, and appearance of food becomes more attractive, and dry surface [6,7]. In addition, cooking oil can also be used for various food processing processes and is used in almost all types of food preparation such as frying, sautéing, grilling, baking, curling, rolling, and cooking by means of extrusion [8]. Frying is one way to cook raw food into cooked food using cooking oil. Deep frying processing requires a large amount of cooking oil in order to submerge entirely of food ingredients in cooking oil [5]. This condition encourages to use cooking oil repeatedly. The use of cooking oil the longer and repeatedly, the quality will decrease due to oxidation fatty acid. Cooking oil has been oxidized can cause poisoning and other negative effects on human health, but the tendency is that people still often use cooking oil repeatedly for economic purposes [9,10]. In addition to economic factors, it is also due to an increase in prices of basic necessities due to government policies to raise fuel prices, thus encouraging people both industry and households to use cooking oil repeatedly. In developing countries, there are still many repeated frying using cooking oil repeatedly with economic goals. Cooking oil has become an inseparable part of the modern food processing system so that its safety is very important for health institutions throughout the world to provide health insurance among the public in consuming cooking oil [11].

The quality of cooking oil is determined by its constituent fatty acid components, which are classes of saturated or unsaturated fatty acids. Saturated fatty acids have adverse effects on health; otherwise unsaturated fatty acids are a good source of nutrition for health. Saturated fatty acids have the potential to increase blood cholesterol, while unsaturated fatty acids can reduce blood cholesterol. In the cooking process, the chemical composition of cooking oil used has contained frying foodstuffs of unsaturated fatty acids and other byproducts that can reduce the quality of cooking oil so that it becomes toxic and often carcinogenic [12]. The composition of fatty acids in cooking oil changes physicochemical properties due to the thermal process during frying. The physicochemical properties of cooking oil used repeatedly changed at a frying temperature of 180°C and a frying time of 10 minutes by repeating the frying five times, namely the formation of trans fatty acids (chemical properties) and increased viscosity (physical properties) [13]. Some in vivo research results suggest that consumption of thermally oxidized cooking oil may be unhealthy because it can affect the lipid profile, namely an increase in low-density lipoprotein (LDL), a decrease in high-density lipoprotein (HDL) and an increase in cholesterol levels, a hematological system, white blood cell counts. (WBC), neutrophil and lymphocyte counts, obesity, coronary heart disease (CHD) and cardiovascular disease, increased blood pressure, atherosclerosis, kidney function, and can induce lipid peroxidation and oxidative stress that have been linked to the pathogenesis of various degenerative diseases [14,15]. Consumption of coconut oil produces LDL cholesterol, which is much higher than non-tropical oil [16].

Based on previous studies, the frying food with a deep frying method using a pan for 15 minutes. The results obtained are that the sample contains more unsaturated fatty acids than saturated, ie, palmitic acid is the main saturated fatty acid; oleic acid is the main unsaturated fatty acid with linoleic acid, linolenic acid, and palmitoleic acid in varying amounts [8]. Lim et al. has detected the falsification of fresh palm olein (FPO) with RCO using fatty acid compositions and Fourier-transform infrared (FTIR) spectral analysis combined with

chemometrics [17]. The FPO is added to the electric frying pan (DFT-6000) with a maximum capacity (5.5 L) and heated for about 20 minutes to reach a temperature of 180°C. The results show a tendency to decrease PUFAs, which is consistent with the increasing magnitude of changes in the level of counterfeiting, and this might be a good indicator to detect the occurrence of FPO forgery with RCO. Of the two results of this study, more specific testing of cooking oil without using additional elements.

Especially, the objective in this study is applied cooking oil with additional elements, namely turmeric extract obtained from the turmeric plant (*Curcuma longa*) as one of the sources of natural antioxidants that contain curcumin. Turmeric is a useful source of natural antioxidants agents and can provide significant protection against damage to cooking oil due to free radicals and can also prevent fat peroxidation [18,19]. Curcumin (C₂₁H₂₀O₆) in turmeric is an active component, hydrophobic yellow-orange polyphenols derived from turmeric rhizomes, and has been used in food as a stabilizer in jelly or as a natural dye in cheese and as an additive in traditional medicine [20–22]. According to Abriana and Johannes [23] showed that the addition of turmeric extract into cooking oil could reduce the formation of trans fatty acids and extend the time of use of cooking oil; and based on the results of the analysis of trans fatty acid levels, the best treatment is the addition of turmeric extract at a concentration of 0.03%. The objective to be achieved in this research is to compare the composition of fatty acids in cooking oil from repeated frying without added turmeric extract with cooking oil that has been added turmeric extract. The contribution of this research is more towards food safety and health for consuming fried food.

2. Materials and Methods

This study aims to test the composition of fatty acids in cooking oil from repeated frying using an experimental laboratory test with 2 (two) types of treatment, namely cooking oil from frying without adding turmeric extract and frying oil from frying with added turmeric extract with 10 repetitions of frying because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The main focus of research is to uncover the phenomenon of cooking oil due to repeated frying by analyzing fatty acid levels using gas chromatography.

2.1. Preparation of turmeric extract.

The use of turmeric extract is a consideration of its function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during frying because it contains curcumin, which is a yellow active component and can be extracted from turmeric rhizome. Turmeric is first selected and cleaned, then cut into small pieces or thinly. Then the turmeric is weighed as much as 100 grams for preparation of extraction. 100 grams of turmeric is dried in an oven at 100°C for 1 hour. After drying, then put into a three-neck flask plus 98% glacial acetic acid solvent that has been diluted with a ratio of 1:1 with a total volume of 300 mL solvent. The heater is turned on, and the return cooler is activated. The zero time of extraction is determined when glacial acetic acid reaches its boiling point (118.1°C) and ends at the specified time for 75 minutes. The extraction results are cooled and filtered using filter paper. The filtrate is distilled while the residue is removed. The filtrate obtained from the extraction was put into a distillation flask to separate the turmeric extract from the solvent. The heater is turned on, and the result is solvent and residue. The residue is dried in an oven at 120°C to remove the residual glacial acetic acid

that is still present in turmeric extract. After that, weighing is done until a constant weight is obtained. Turmeric extract was added to cooking oil before frying food with a concentration of 0.03% [23].

2.2. Frying of food Test.

Food frying is done using the deep frying method by using an electric frying kettle equipped with a temperature and time regulator. The frying process starts by putting fresh cooking oil into the frying boiler as much as 3.5 liters (maximum capacity), then the kettle is heated to a temperature of 180°C. Food is fried until cooked within 10 minutes and made as little as possible stirring to reduce the flow of convection in oil and oxidation reactions due to the aeration process. The analysis was carried out on fresh oil (oil that has not been used for frying foodstuffs) as control and on two oil samples, namely cooking oil from frying without added turmeric extract and cooking oil from frying with added turmeric extract. The oil used for repeating the frying is the same oil (it is not replaced, and no additional volume of fresh oil is made). Frying is repeated 10 times with the same temperature and time of frying. Cooking oil samples were taken immediately after the frying process as much as 200 mL, then the oil in the kettle was allowed to cool down and continued with the next frying which is frying first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth [23]. Samples taken for analysis of fatty acid content are samples from the repetition of the first, fifth, and tenth frying.

2.3. Characterization of Cooking Oil.

First, the cooking oil is hydrolyzed into fatty acids, then transformed into a more volatile ester form. The transformation is carried out by methylation to obtain fatty acid methyl esters (FAME); Furthermore, this FAME was analyzed with GC-2010 (Gas Chromatograph) Plus Serial No. gas chromatography. C11804700336 Shimadzu Corp., using standard methods from The Association of Official Analytical Chemists (AOAC). The analysis starts by injecting of solvent as much as 1.0 μ L into the column to obtain a baseline. If the carrier gas flow and heating system are perfect, the peak of the solvent will appear in less than 1 minute. After obtaining the baseline, then proceed by injecting 1 μ L of the standard FAME mixture (Supelco TM 37 Component FAME Mix Catalog No. 47885-U, Bellefonte, PA, USA). When all the peaks are out, the prepared sample is injected as much as 1.0 μ L. Retention times and peak samples were measured for each component.

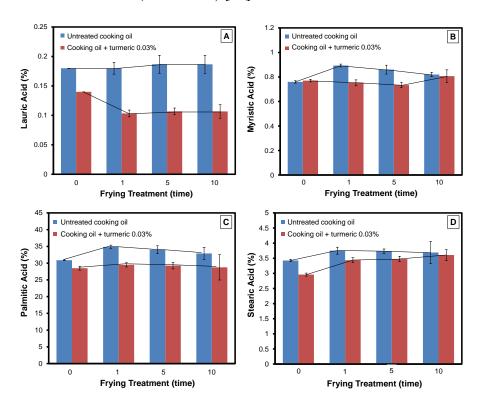
3. Results and Discussion

In this study, we produced the component of saturated fatty acids in cooking oil namely lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), and stearic acid (C18:0) while acids Unsaturated fats such as elaidic acid (C18:1n9t), oleic acid (C18:1n9c), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), linoleic acid (C18:2n6c), cis-11-eicosenoic acid (C20:1), linolenic acid (C18:3n3), and cis-11,14-eicosadienoic acid (C20:2). The highest saturated fatty acid content in fresh cooking oil (as control) is palmitic acid (C16:0) meanwhile, unsaturated fatty acid is oleic acid (C18:1n9c). The higher content of palmitic acid (C16:0) in cooking oil is the major component of palmitic acid in palm oil [11]. The HPLC analysis has exhibited that cooking oil based on palm oil contains the high saturated fatty acid like palmitic acid 30.88% and unsaturated fatty acids namely oleic acid 35.86%, linoleic acid 10.41%, stearic acid 3.43%, mistic acid 0.76%; lauric acid 0.18%; linolenic acid

0.18%; cis-11-eicosenoic acid 0.14%; elaidic acid 0.09% and cis-11,14-eicosadienoic acid 0.07% (Table 1).

Table 1. Composition of fatty Acids from recycled frying cooking oil.

Treatment	Fatty Acids	Frying Treatment (time) [%]				Standards based on O'Brien (2003) [24]
		0	1	5	10	
Untreated Cooking Oil	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.18 ±0.003	0.18 ± 0.010	0.19 ± 0.015	0.19 ± 0.015	0.1-1.0
	Myristic Acid, C14:0	0.76 ± 0.010	0.89 ± 0.012	0.86 ± 0.036	0.82 ± 0.017	0.9-1.5
	Palmitic Acid, C16:0	30.88 ± 0.080	34.83 ± 0.555	34.00 ±1.167	32.90 ± 1.795	41.8-46.8
	Stearic Acid, C18:0	3.43 ±0.035	3.75 ±0.115	3.73 ±0.075	3.68 ±0.367	4.5-5.1
	Unsaturated Fatty Acids					
	Elaidic Acid, C18:1n9t	0.09 ±0.010	0.09 ±0.006	0.11 ±0.001	0.11 ±0.001	<1
	Oleic Acid, C18:1n9c	35.86 ± 0.145	40.47 ±0.746	40.18 ±0.812	38.52 ±2.807	37.3-40.8
	Linoleic Acid, C18:2n6c	10.41 ±0.02	11.56 ±0.165	11.41 ±0.214	10.61 ±0.735	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ±0.006	0.13 ±0.006	0.13 ±0.006	0.13 ±0.015	-
	Linolenic Acid, C18:3n3	0.18 ±0.005	0.20 ±0.010	0.19 ±0.003	0.17 ±0.006	<1.5
	Cis-11,14-Eicosedienoic Acid, C20:2	0.07 ±0.001	0.09 ±0.021	0.10 ±0.017	0.09 ±0.015	-
	Saturated Fatty Acids					
	Lauric Acid, C12:0	0.14 ±0.001	0.10 ±0.006	0.11 ±0.006	0.11 ±0.012	0.1-1.0
	Myristic Acid, C14:0	0.77 ±0.010	0.75 ±0.016	0.73 ±0.021	0.81 ±0.051	0.9-1.5
	Palmitic Acid, C16:0	28.5 ± 0.580	29.49 ± 0.640	29.25 ±0.957	28.75 ±3.788	41.8-46.8
	Stearic Acid, C18:0	2.96 ±0.050	3.44 ± 0.081	3.47 ±0.090	3.61 ±0.182	4.5-5.1
Cooking	Unsaturated Fatty Acids					
Oil + 0.03%	Elaidic Acid, C18:1n9t	0.07 ± 0.001	0.09 ± 0.006	0.09 ± 0.006	0.09 ± 0.006	<1
Turmeric	Oleic Acid, C18:1n9c	32.97 ±0.560	33.24 ±1.025	34.05 ±1.100	35.43 ±1.974	37.3-40.8
	Linoleic Acid, C18:2n6c	8.89 ±0.160	9.74 ± 0.211	9.94 ±0.495	10.19 ± 0.560	9.1-11.0
	Cis-11-Eicosenoic Acid, C20:1	0.14 ±0.006	0.11 ±0.006	0.12 ±0.001	0.12 ±0.006	-
	Linolenic Acid, C18:3n3	0.18 ±0.003	0.18 ±0.015	0.18 ±0.017	0.18 ±0.012	<1.5
	Cis-11,14-Eicosedienoic Acid, C20:2	0.06 ±0.001	0.05 ±0.010	0.04 ±0.010	0.06 ±0.010	-


In addition, we added the turmeric extract 0.03% into cooking oil to suppress oxidation reaction shows that the high saturated fatty acid such as palmitic acid 28.5% and unsaturated fatty acids content of oleic acid 32.97%, linoleic acid 8.89%, stearic acid 2.96%, myristic acid 0.77%, linolenic acid 0.18%; lauric acid 0.14%, cis-11-eicosenoic acid 0.14%; elaidic acid 0.07% and cis-11,14-eicosadienoic acid 0.06% (Table 1). The composition of most fatty acids in recycled cooking oil (RCO) is in the range according to Codex standards, except for C8:0, C10:0, C11:0, C11:0, trans C18:1, and polyunsaturated fatty acids (PUFAs), C20:5 [17]. According to Awogbemi [25] reported that palm oil contained 87.7% unsaturated fatty acids and 12.3% saturated fatty acids. Based on these results also show the variation of cooking oil used and type of food fried greatly affect the properties and composition of fatty acids. Overall, in fresh cooking oil was contained 63.16% linoleic acid 20.72%, linolenic acid 10.53%, stearic acid 5.26%, and the smallest component was palmitic acid 0.33% [26].

3.1. Saturated fatty acids.

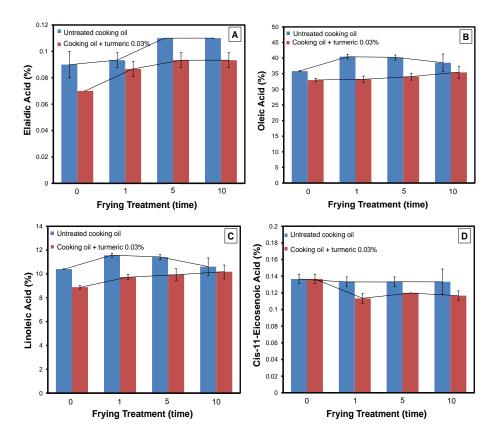
The saturated fatty acid has been investigated into repeated frying cooking oil based on palm oil; we found the lauric acid, myristic acid, palmitic acid, and stearic acid compounds. Certainly, palm oil as feedstock to produce cooking oil contains 92% saturated fatty acids,

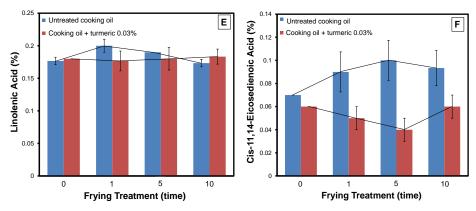
including 48% lauric acid, myristic acid 20%, and palmitic acid 9%, with monounsaturated fatty acids 6% and polyunsaturated fatty acids 1.7% [27]. Figure 1 extracted from Table 1 to observe the range composition and an upward or downward trend in each composition of organic constituents in cooking oil. Figure 1 was recurring frying oil without added turmeric extract showed that before fried the lauric acid of 0.18% (0 times), first frying 0.18% (1 time), fifth frying 0.19% (5 times) and tenth frying 0.19% (10 times). We also compare each organic constituents in cooking oil with results that have been studied from O'Brien and Richard D. [24] as standard organic constituents in fats and oils. Based on frying treatment, the lauric acid frequency looks to increase; it means that the repetition of a frying treatment can increase the lauric acid compound. Then it is compared with standard 0.1-1.0 shows that do not exceed the specified standard.

Meanwhile, the cooking oil has been added turmeric extract 0.03% contains lauric acid of 0.14% (0 times), 0.10% (1 time), 0.11% (5 times) and 0.11% (10 times). The lauric acid frequency was decreased in the first frying, then increase in the fifth and tenth frying (+0.01). By adding 0.03% turmeric extract can reduce the lauric acid compound, then it is compared with a standard data where it does not exceed the predetermined. The lauric acid is also mostly found in virgin coconut oil (VCO), which consists of 90% medium-chain fatty acids (dominated by lauric acid, which is 45-55% and 10% long-chain fatty acids). If it is compared with oil palm, VCO has a higher of lauric acid content, which is 54.06%, meanwhile in palm oil of 0.10%. Lauric acid plays a role in maintaining health, among others, functions to kill various types of microbes derived from fatty acids, to increase metabolic activity, and protect the body from disease and accelerate healing [28]. Among saturated fatty acids, lauric acid has been shown to contribute the least to fat accumulation [29]. Likewise, myristic acid has not exceeded the predetermined standard. Myristic acid (C14:0) is a fatty acid that is found in palm kernel oil and coconut oil, which can increase low-density lipoprotein (LDL) cholesterol levels, but it is a minor group in food. It is a long-chain saturated fatty acid (14:0) and also one of the fattiest acids found in milk fat (above 10%) [30].

Figure 1. Saturated fatty acids component, (A) Lauric acid, (B) Myristic acid, (C) Palmitic acid and (D) Stearic acid.

Figure 1C the palmitic acid was quite increased along with the repetition of the frying, and it's still lower than the standard which has been specified (41.8-46.8). Palmitic acid is the main fatty acid in palm oil [31]. Palmitic acid is also the main component of saturated fatty acids in food, which contains vegetable oils 6-10% and can increase LDL cholesterol levels. The presence of palmitic acid in cooking oil can be used as an indicator to detect falsification of fresh palm oil (FPO) with RCO using fatty acid composition analysis (FAC) [17]. Figure 1D also exhibited of the stearic acid compound can be seen that has increased along with the repetition of the frying and compared with a standard in a range of 4.5-5.1 where the saturated fatty acid of stearic acid is still lower from predetermined standards. It is a major component of various types of fat with different amounts, such as animal fat (beef fat) containing 15-20% and only a little in vegetable oil, 4-5% [31]. Stearic acid lowers LDL and HDL cholesterol concentrations when compared with palmitic acid because these fatty acids are quickly converted to monounsaturated fatty acids and oleic acid interesterification of fats rich in palmitic acid or stearic acid does not appear to affect serum lipid fasting and (apo) lipoprotein [32].


Based on saturated fatty acid results and compared with standard fats and oils, we discover that the oil from repeated frying produces saturated fatty acids that do not exceed the specified standard. This means that repeated frying oil based on palm oil is still safe for consumption because of all the saturated fatty acids found within the reasonable standard range, though that can raise cholesterol levels (myristic acid and palmitic acid). In vegetable oils such as palm oil is dominated by more carbon atoms, whereas in animal oils are odd carbon atoms and contain more polyunsaturated fatty acids (PUFA) [33]. Cooking oil with high saturated fatty acid content will affect the stability of food items that are fried during frying [34,35]. In addition, the high content of fatty acids causes oil to be easily damaged during cooking processing because the oil will be heated continuously at high temperatures and direct contact with oxygen in the surrounding air, which facilitates the oxidation reaction to the oil. According to Baba-Moussa et al. [12], an increase in temperature followed by a long heating time indicates that an increase in the fatty acid component forms triglycerides. The result of triglyceride hydrolysis will produce saturated and unsaturated fatty acids based on the presence or absence of carbon chain double bonds in the molecule.


3.2. Unsaturated fatty acids.

The presence of organic constituents in repeated frying oil has been examined that it contains elaidic acid, oleic acid, linoleic acid, cis-11-eicosenoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. Based on Figure 2A the content of untreated cooking oil from elaidic acid showed that 0.09% (0 times), 0.09% (1 time), 0.11% (5 times) and 0.11% (10 times), while the frying oil added 0.03% turmeric extract showed the treatment before frying 0.07% (0 times), 0.09% (1 time), 0.09% (5 times) and 0.09% (10 times). If seen from the frequency of elaidic acid (Figure 2A) that repeated frying can increase the level of elaidic acid and compare with standard <1 that it does not exceed the specified standard. This is because trans fatty acids (TFA) in elaidic acid are unsaturated fatty acids with at least one double bond in the form of trans configuration that can occur naturally from ruminants-based meat and dairy products, or artificially through partial hydrogenation of vegetable oils in industry food processing [36]. Sartika also reported that trans fatty acids (elaidate) were only formed after the second

repetition of deep-frying, and their levels increased with the repeated use of oil. Based on the initial formation of trans fatty acids, the frying process should be done on medium heat (<200°C), and the cooking oil used should not exceed 2 (two) repetitions. Not so in the oleic acid compound (Figure 2B) shows a tendency to vary, if it is compared with the standard of 37.3-40.8. Whereas the recycled frying oil added with 0.03% turmeric extract showed an increase along with the repetition of the frying and when compared with the standard 37.3-40.8. These results indicate that oleic acid is still lower than the standard value.

Furthermore, the content of linoleic acid (Figure 2C) in untreated cooking oil showed the same conditions varying when compared with the standard of 9.1-11.0. One that met the standard was the treatment before the tenth frying and frying, while those that do not meet the standards in the first and fifth frying treatment. Then, it compared with frying cooking oil added 0.03% turmeric extract showed an increase along with the repetition of the frying and compared with the standard the first, fifth, and tenth frying have met the standards. Meanwhile, which did not meet the standards in the treatment before the addition of turmeric extract such as the first and fifth frying. This result showed that repeated frying could increase the levels of linoleic acid in the oil from repeated frying by adding 0.03% turmeric extract. It is due to the conjugation of linolenic acid isomer refers to a group of positions and geometrical isomers of omega-3-α-linolenic acid essential acids (cis-9, cis-12, cis-15 C18: 3; ALA) [37,38].

Figure 2. Unsaturated fatty acids component (A) elaidic acid, (B) oleic acid, (C) linoleic acid, (D) cis-11-eicosenoic acid, (E) linolenic acid, and (F) cis-11,14-eicosadienoic acid.

The content of cis-11-eicosenoic acid (Figure 2D) in untreated cooking oil and added 0.03% turmeric extract had decreased levels caused by slow oxidation reactions against cis-11eicosenoic acid. The frequency of linolenic acid (Figure 2E) in unprocessed cooking oil shows a variable trend. At the beginning of the frying (1 time), there was an increase compared to those not treated, but over time the frying duration decreases. In otherwise, by adding turmeric extract shows a quite static level before frying to the tenth repetition treatment. It shows that turmeric extract can suppress the occurrence oxidation reaction. Meanwhile, Figure 2F depicts cis-11-14-eicosadienoic acid has increased in untreated cooking oil, while the unique by adding turmeric extract dramatically decrease levels. It is concluded cooking oil without treatment has shown increase unsaturated acid levels. The performance of turmeric extract has quite demonstrated efficiency in suppressing chemical reactions during frying treatment [39]. In addition, turmeric extract can function as an antioxidant so that it can inhibit thermal oxidation in cooking oil during repeated frying. This will affect the composition of fatty acids contained in cooking oil. According to Kim and Clifton [40] showed that curcumin (diferuloylmethane) is the main secondary metabolite in turmeric extract, which is beneficial to the human body as antioxidant and anti-inflammatory properties. Curcumin, as a bioactive component, has been shown to be a broad biological action. To date, it has been reported that natural colored extracts are isolated from turmeric by various methods such as maceration, digestion, microwave, and infusion [21]. Turmeric varieties studied by Tanvir et al. [18] is a useful source of natural antioxidants and can provide protection against free radical damage. Curcumin can be used as a food additive and is also good for use as conventional medicine [41].

4. Conclusions

This study reports the chemical composition of cooking oil consisting of saturated fatty acids, such as lauric acid, myristic acid, palmitic acid, and stearic acid. Whereas, the unsaturated fatty acids of elaidic acid, oleic acid, linoleic acid, cis-11-eicosedienoic acid, linolenic acid, and cis-11,14-eicosedienoic acid. The highest saturated fatty acid levels in cooking oil before frying, are palmitic acid of 30.88%, whereas unsaturated fatty acids, namely oleic acid of 35.86%. The high saturated fatty acid content in oil cooking before the frying process is palmitic acid of 30.88%, whereas the unsaturated fatty acid is oleic acid of 32.97%. Turmeric extract added to cooking oil can function as an anticosidan so that it can inhibit thermal oxidation in cooking oil during repeated frying. The treatment of repeated frying

affects the fatty acids contained in repeated cooking oils, both saturated fatty acids and unsaturated fatty acids.

Funding

This research received no external funding.

Acknowledgments

We are grateful for the laboratory facilities from the Department of Food Technology, Faculty of Agriculture, Universitas Bosowa Makassar, in conducting this research.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Prasetyo, J. Studi Pemanfaatan Minyak Jelantah Sebagai Bahan Baku Pembuatan Biodiesel. *Jurnal Ilmiah Teknik Kimia* **2018**, 2, 45–54, http://dx.doi.org/10.32493/jitk.v2i2.1679.
- 2. Gashaw, A.; Getasetegn, M. Chemistry and Health Impacts of Trans Fatty Acids. *Journal of Chemical Technology & Metallurgy* **2018**, *53*, 159–169.
- 3. Astrup, A.; Bertram, H.C.S.; Bonjour, J.P.; de Groot, L.C.P.; de Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; Lamarche, B.; Lecerf, J.M.; Legrand, P.; McKinley, M.; Micha, R.; Michalski, M.C.; Mozaffarian, D.; SoedamahMuthu, S.S. WHO draft guidelines on dietary saturated and trans fatty acids: time for a new approach? *British Medical Journal*, **2019**, *366*, 14137, https://doi.org/10.1136/bmj.14137.
- 4. Falade, A.O.; Oboh, G.; Okoh, A.I. Potential health implications of the consumption of thermally-oxidized cooking oils—a review. *Polish journal of food and nutrition sciences* **2017**, *67*, 95–106, https://doi.org/10.1515/pjfns-2016-0028.
- 5. Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry—A review. *Food bioscience* **2015**, *10*, 26–41, https://doi.org/10.1016/j.fbio.2015.01.003.
- 6. Dewi, T.I.; Twilana, M. Bulk Cooking Oil Quality Improvement Using Adsorbent Activated Bentonite. *UNESA Journal of Chemistry* **2012**, *1*, 47–53.
- 7. Dalbhagat, C.G.; Mahato, D.K.; Mishra, H.N. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. *Trends in Food Science & Technology*, **2019**, *85*, 226-240. https://doi.org/10.1016/j.tifs.2019.01.001.
- 8. Oluwaniyi, O.O.; Dosumu, O.O.; Awolola, G.V. Effect of cooking method on the proximate, amino acid and fatty acid compositions of Clarias gariepinus and Oreochromis niloticus. *Journal of the Turkish Chemical Society Section A: Chemistry* **2017**, *4*, 115–132, https://doi.org/10.18596/jotcsa.53143.
- 9. Multari, S.; Marsol-Vall, A.; Heponiemi, P.; Suomela, J.P.; Yang, B. Changes in the volatile profile, fatty acid composition and other markers of lipid oxidation of six different vegetable oils during short-term deepfrying. *Food Research International*, **2019**, *122*, 318-329. https://doi.org/10.1016/j.foodres.2019.04.026.
- 10. Sottero, B.; Leonarduzzi, G.; Testa, G.; Gargiulo, S.; Poli, G.; Biasi, F. Lipid oxidation derived aldehydes and oxysterols between health and disease. *European journal of lipid science and technology*, **2019**, *121*(1), 1700047. https://doi.org/10.1002/ejlt.201700047.
- 11. Akhtar, S.; Tanveer, M.; Ismail, A.; Ismail, T.; Hussain, M. Safety evaluation of oil samples collected from different food points of multan city of Pakistan. *International Journal of Food and Allied Sciences* **2018**, *3*, 43–48, https://doi.org/10.21620/ijfaas.2017243-48.
- 12. Baba-Moussa, F.; Zynzendorf, Y.N.; Bonou, J.; Gbénou, J.; Moudachirou, M.; Kotchoni, S.O.; Toukourou, F.; Baba-Moussa, L. Kit reliability for controlling the quality of oils in food frying. *Journal of Microbiology Biotechnology and Food Sciences* **2020**, *9*, 121–134.
- 13. Abriana, A.; Mahendradatta, M.; Djide, N.; Zainal, Z. Analysis of Trans Fatty Acid Content and Viscosity of the Repeteadly Used Frying Oil. *International Journal of Agriculture System* **2013**, *1*, 71–79.
- 14. Pena-Bautista, C.; Vento, M.; Baquero, M.; Chafer-Pericas, C. Lipid peroxidation in neurodegeneration. *Clinica Chimica Acta*, **2019**, 497, 178-188. https://doi.org/10.1016/j.cca.2019.07.037.
- 15. Barati, E.; Nikzad, H.; Karimian, M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. *Cellular and Molecular Life Sciences*, **2020**, 77, 93–113. https://doi.org/10.1007/s00018-019-03253-8.
- 16. Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The Effect of Coconut Oil Consumption on Cardiovascular

- Risk Factors: A Systematic Review and Meta-Analysis of Clinical Trials. *Circulation* **2020**, *141*, 803–814, https://doi.org/10.1161/CIRCULATIONAHA.119.043052.
- 17. Lim, S.Y.; Abdul Mutalib, M.S.; Khaza'ai, H.; Chang, S.K. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. *International Journal of Food Properties* **2018**, *21*, 2428–2451, https://doi.org/10.1080/10942912.2018.1522332.
- 18. Tanvir, E.M.; Hossen, M.; Hossain, M.; Afroz, R.; Gan, S.H.; Khalil, M.; Karim, N. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. *Journal of Food Quality* **2017**, 2017, 1–8, https://doi.org/10.1155/2017/8471785.
- 19. Shankar, S.; Srivastava, R.K. Curcumin: structure, biology and clinical applications. In: *Nutrition, diet and cancer*. Springer, **2012**; pp. 413–457, https://doi.org/10.1007/978-94-007-2923-0_17.
- 20. Kim, J.H.; Yang, H.J.; Kim, Y.-J.; Park, S.; Lee, O.; Kim, K.S.; Kim, M.J. Korean turmeric is effective for dyslipidemia in human intervention study. *Journal of Ethnic Foods* **2016**, *3*, 213–221, https://doi.org/10.1016/j.jef.2016.08.006.
- 21. Nabati, M.; Mahkam, M.; Heidari, H. Isolation and characterization of curcumin from powdered rhizomes of turmeric plant marketed in Maragheh city of Iran with soxhlet technique. *Quarterly Journal of Iranian Chemical Communication* **2014**, *2*, 236–243.
- 22. Palve, Y.P.; Nayak, P.L. Curcumin: a wonder anti-cancer drug. *International Journal of Pharmacy and Biomedical Sciences* **2012**, *3*, 60–69.
- 23. Abriana, A.; Johannes, E. Turmeric extract as an antioxidant in repeatedly used cooking oil. *International Journal of Scientific & Technology Research* **2014**, *3*, 347–350.
- 24. O'brien, R.D. Fats and oils: formulating and processing for applications. CRC press, 2008.
- 25. Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. *International Journal of Low-Carbon Technologies* **2019**, *14*, 417–425, https://doi.org/10.1093/ijlct/ctz038.
- 26. Bazina, N.; He, J. Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. *Journal of food science and technology* **2018**, *55*, 3085–3092, https://doi.org/10.1007/s13197-018-3232-9.
- 27. Kwon, S.Y.; Massey, K.; Watson, M.A.; Hussain, T.; Volpe, G.; Buckley, C.D.; Nicolaou, A.; Badenhorst, P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. *Life science alliance* **2020**, 3, 1–17, https://doi.org/10.26508/lsa.201900356.
- 28. Suryani, S.; Sariani, S.; Earnestly, F.; Marganof, M.; Rahmawati, R.; Sevindrajuta, S.; Mahlia, T.M.I.; Fudholi, A. A Comparative Study of Virgin Coconut Oil, Coconut Oil and Palm Oil in Terms of Their Active Ingredients. *Processes* **2020**, *8*, 402–413, https://doi.org/10.3390/pr8040402.
- 29. Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. *Journal of the American Oil Chemists' Society* **2015**, 92, 1–15, https://doi.org/10.1007/s11746-014-2562-7.
- 30. Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the components from goat's milk, recent advances for functional dairy products development and its implications on human health. *Journal of Functional Foods* **2019**, *52*, 243–257, https://doi.org/10.1016/j.jff.2018.11.017.
- 31. Taufik, M.; Lioe, H.N.; Yuliana, N.D. Evaluation of Major Fatty Acids Determination in Palm Oil by Gas Chromatography-Flame Ionization Detection. *Agritech* **2016**, *36*, 308–316, https://doi.org/10.22146/agritech.16603.
- 32. van Rooijen, M.A.; Mensink, R.P. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers-A Systematic Review. *Nutrients* **2020**, *12*, 615–629, https://doi.org/10.3390/nu12030615.
- 33. Svetashev, V.I.,; Kharlamenko, V.I. Fatty Acids of Abyssal Echinodermata, the Sea Star Eremicaster vicinus and the Sea Urchin Kamptosoma abyssale: A New Polyunsaturated Fatty Acid Detected, 22: 6 (n-2). *Lipids*, **2020**, *55*(3), 291-296. https://doi.org/10.1002/lipd.12227.
- 34. Woo, Y.; Kim, M.J.; Lee, J. Prediction of oxidative stability in bulk oils using dielectric constant changes. *Food chemistry*, **2019**, 279, 216-222. https://doi.org/10.1016/j.foodchem.2018.12.012.
- 35. Yan, C.; McClements, D.J.; Zou, L.; Liu, W. A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in β-carotene stability and bioaccessibility. *Food & function*, **2019**, *10*(9), 5446-5460. https://doi.org/10.1039/C9FO00508K.
- 36. Sanchez, J.L.; Pereira, S.B.G.; Tanamati, A.; Tanamati, A.A.C. Monitoring industrial hydrogenation of soybean oil using self-organizing maps. *Emirates Journal of Food and Agriculture*, **2019**, 779-787. https://doi.org/10.9755/ejfa.2019.v31.i10.2019.
- 37. Taha, A.Y. Linoleic acid—good or bad for the brain? *NPJ science of food* **2020,** *4*, 1–6, https://doi.org/10.1038/s41538-019-0061-9
- 38. Białek, M.; Czauderna, M.; Białek, A. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. *Journal of Animal and Feed Sciences* **2017**, *26*, 3–17, https://doi.org/10.22358/jafs/68862/2017.
- 39. Rebiai, A.; Belfar, M.L.; Mesbahi, M.A.; Nani, S.; Tliba, A.; Amara, D.G.; Chouikh, A. Fatty acid composition of Algerian propolis. *Journal of Fundamental and Applied Sciences* **2017**, *9*, 1656–1671.
- 40. Kim, Y.; Clifton, P. Curcumin, cardiometabolic health and dementia. *International journal of environmental research and public health* **2018**, *15*, https://doi.org/10.3390/ijerph15102093.

41. Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. *Nutrition journal* **2017**, *16*, 68–78,https://doi.org/10.1186/s12937-017-0293-y.

andi abriana <andi.abriana510@gmail.com>

BRIAC_Vol_11_lss_2_Your paper has been published online

2 pesan

Alex Grumezescu <al.grumezescu@gmail.com>
Kepada: andi.abriana510@gmail.com, Maulidiyah <maulid06@yahoo.com>

30 Agustus 2020 pukul 23.56

Dear Colleague,

Many thanks for your contribution to our journal in Volume 11, Issue 2, 2021. It was a pleasure to publish your work free of charge.

https://biointerfaceresearch.com/?page_id=6765

DOI will be assigned soon.

This year, our journal is tracked for the first impact factor. In this context, to receive the impact factor, we must have the journal in the Q1-Q2 SCIE Web of Science.

This is a kind request to ask you to bring (until the end of this year) 10-20 BRIAC citations for published papers from the last 2 years (2018-2019) in your other papers published elsewhere (indexed in Web of Science). Please note that only these years count on the impact factor. If you could bring more citations, your group will be most welcome to publish in our journal!

Do not forget that our policy is Platinum Open Access, 100% free for AUTHORS, 100% free for READERS.

Gratitude and I remain open to any!

Please let me know if I count on your support! This is very important for us, to have an up to date overview of citations in this year.

Alex

PS: Please distribute this info with your close colleagues, friends, and with your team in order to raise our chance to be indexed as Q1-Q2 journal in Web of Science and also to publish continuously 100% free papers.

Alexandru Mihai GRUMEZESCU Editor in Chief http://grumezescu.com/ http://biointerfaceresearch.com/ Biointerface Research in Applied Chemistry review@BiointerfaceResearch.com briac@amgtranscend.org

Alex Grumezescu <al.grumezescu@gmail.com>

5 November 2020 pukul 17.45

Kepada: andi.abriana510@gmail.com, Maulidiyah <maulid06@yahoo.com>

Dear Author,

Could you please help us to cite BRIAC papers (from 2019-2020) 2-3 times in your next papers until the end of this year?

This is the last chance for this year to support us to be indexed in ESCI (Clarivate Analytics) and to receive our first impact factor in the Q2 zone. We need more ~ 50 citations. Otherwise, from 1st January we will start again from zero.

Here is the link with the list of published papers that must be cited

Word: http://biointerfaceresearch.com/wp-content/uploads/2020/02/BRIAC 2018-2019-citations.docx)

Endnote database: http://biointerfaceresearch.com/wp-content/uploads/2020/02/EndNote-ReferenceManager-Biointerface-Research-in-Applied-Chemistry-2018-2019-published-papers.ris

Bibtex database: http://biointerfaceresearch.com/wp-content/uploads/2020/02/BibTeX-Biointerface-Research-in-Applied-Chemistry-2018-2019-published-papers.bib Any citation from 2018-2019 is most welcome.

Kind regards and I remain open to any,

Alex

[Kutipan teks disembunyikan]