PENGARUH PEMBERIAN BERBAGAI JENIS RUMPUT LAUT TERHADAP PERTUMBUHAN INDUK ABALON TROPIS (Haliotis asinina)

SKRIPSI

Oleh:

Raman La idris 45 03 034 002

PROGRAM STUDI BUDIDAYA PERAIRAN JURUSAN PERIKANAN FAKULTAS PERTANIAN UNIVERSITAS "45"
MAKASSAR
2011

PENGARUH PEMBERIAN BERBAGAI JENIS RUMPUT LAUT TERHADAP PERTUMBUHAN INDUK ABALON TROPIS (Haliotis asinina)

Oleh

RAMAN LAIDRIS 45 03 034 002

Skripsi Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Perikanan

Pada

Jurusan Perikanan Fakultas Pertanian

PROGRAM STUDI BUDIDAYA PERAIRAN JURUSAN PERIKANAN
FAKULTAS PERTANIAN
UNIVERSITAS "45"
MAKASSAR
2011

HALAMAN PENGESAHAN

PENGARUH PEMBERIAN BERBAGAI JENIS RUMPUT LAUT TERHADAP PERTUMBUHAN INDUK ABALON TROPIS (Haliotis asinina)

OLEH:

RAMAN LAIDRIS 45 03 034 002

Telah Diperiksa di Depan Penguji dan Dinyatakan Lulus Pada Tanggal 18 Mei 2011

Menyetujui dan Mengesahkan Rektor Universitas "45" Makassar

Prof. Dr. Ir. Mir Alam, M.Si NIP. 19631231 198910 1 002 Dekan Fakul<mark>tas</mark> Pertanian Universit<mark>as "4</mark>5" Makassar

Dr. Ir. M. Arief Nasution, M.Si NIP. 19630810 199403 1 001

LEMBAR PERSETUJUAN

Judul

: Pengaruh Pemberian Berbagai Jenis Rumput Laut Terhadap

Pertumbuhan Induk Abalon Tropis (Haliotis Asinina)

Nama

: RAMAN LAIDRIS

Stambuk

: 45 03 034 002

Program Studi : Budidaya Perikanan

Telah Diperiksa dan Disetujui:

Dr. Ir. Zain uddin, M.Si. Pembimbing Utama Dr. Ir. Hadijah, M.Si Pembimbing Anggota

Disetujui Oleh:

Dr. Ir. M. Arif Nasution MP

Dekan Fakultas Pertanian

<u>Dahlifa S.Pi,M.Si</u> Ketua Jurusan Budidaya Perikanan

Tanggal Lulus: 18 Mei 2011

Abstrak

RAMAN LA IDRIS. 45 03 034 002. Pengaruh Pemberian berbagai Jenis Pakan terhadap Pertumbuhan Induk Abalon Tropis (*Haliotis asinina*) (Dibawah bimbingan ZAINUDDIN dan HADIJAH ZAINUDDIN)

Penelitian ini bertujuan untuk mengetahui pengaruh jenis-jenis rumput laut terhadap pertumbuhan induk abalon tropis (*Haliotis asinina*) Hasil penelitian ini diharapkan dapat memberikan informasi dasar dalam usaha budidaya abalon, terutama tentang pengaruh pemberian pakan, sehingga dapat digunakan untuk keperluan usaha pembenihan dan budidayanya.

Penelitian ini dilakukan selama dua bulan dari bulan September sampai November 2009 di Balai Budidaya Air Payau (BBAP), Desa Boddia, Kecamatan Galesong Selatan, Kabupaten Takalar. Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan tiga perlakuan pakan yaitu : A = Gracillaria lichenoides, B = Euchema cottoni (Kappaphicus alvarezi), C = Kombinasi antara Gracillaria lichenoides dan Kappaphicus alvarezi dan setiap perlakuan diulang tiga kali.

Hasil penelitian ini menunjukkan bahwa: Pemberian pakan rumput laut jenis *G. Lichenoides, Kappaphicus alverezi* dan kombinasi keduanya memperlihatkan pengaruh yang sama terhadap pertumbuhan induk abalon tropis (*Haliotis asinina*). Hasil uji BNT memperlihatkan pengaruh yang sama terhadap pertumbuhan berat, lebar dan panjang cangkang abalon. Salinitas air untuk budidaya induk abalon rata-rata 32 ppt sedangkan suhu rata-rata 28,5 °C

KATA PENGANTAR

Tidak ada gerak seindah sujud, ketika nikmat dan rahmat dan tidak ada kata tulus syukur *Alhamdulillah*, kata yang patut penulis haturkan kehadirat Allah SWT atas limpahan rahmat, karunia, serta lindungan-Nya kepada penulis sehingga penulis menyelesaikan skripsi ini. Skripsi ini merupakan syarat untuk memperoleh gelar sarjana pada Jurusan Perikanan Fakultas Pertanian Universitas "45" Makassar.

Dengan selesainya skripsi ini, penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- Bapak Dr. Ir. Zainuddin M.Si selaku pembimbing utama yang telah membimbing penulis sejak persiapan penelitian hingga selesainya skripsi ini.
- 2. Ibu Dr. Ir. Hadijah M.Si selaku pembimbing anggota yang telah banyak membantu, membimbing dan mensupport penulis sejak persiapan penelitian hingga selesainya skripsi ini.
- 3. Bapak Sugeng S.Sit selaku Kepala Balai Budidaya Air Payau (BBAP), Takalar. yang telah menerima penulis dalam melaksanakan penelitian.
- 4. Ibu Farida, S.Pi dan Ibu Mutmainah, S.Pi yang telah banyak membantu dan membimbing penulis selama pelaksanaan penelitian.

- Ibu Dahlifa S.Pi, M.Si. Selaku Ketua Jurusan Perikanan yang telah mengizinkan penulis melaksanakan penelitian di Balai Budidaya Air Payau (BBAP) Takalar.
- 6. Bapak Ir. Andi Gusti Tantu, MP, Bapak Sutia Budi, S.Pi, M.Si, Ibu Ir.Erni Indrawati, MP, Ibu Ratnawati S.Pi,M.Si dan Ibu Mardiana S.Pi. Selaku Dosen pengajar yang telah memberikan bimbingan dan pengetahuan selama ini.
- 7. Sembah sujudku kepada ayahanda dan ibunda tercinta atas kasih sayang, do'a dan dukungan selama ini, juga kakakku Indra .Bahrudin Laidris, SH, Andi Laidris, S.Sos dan Dahlan Laidris, SE kalian adalah pelita hidupku.
- 8. Haslinda (Indah) sebagai "orang terdekatku" terima kasih atas dukungan, bantuan dan semua yang telah diberikan.
- 9. Taufiq Laafe, S.Pi terima kasih atas kerja sama dan dukungan suka maupun duka selama kita melaksanakan penelitian.
- 10. Adik-adikku Sri Mawarni, Wira, Jarman, Safri, Dwi, Pipin, Nurhaidah Rahman, La Hiri, La Yanto, atas dukungan supportnya dan terus berprestasi.
- 11. Sahabat serta Senior terbaikku Wengky, S.Kom, Natan, Diana, Linda, Asrawati, Nuraisyah, Tanri Azis, S.Pt, Hermansyah, Tince, Jabarullah, Kiki Maria Dewi, Dewi, Irma, Hendra, Azis, Mamet, Brian, Kingkong, Kabul Jaya, S.Pi, Elis Noviana Hasibuan, S.Pi, Ridwan M.A Tangke atas dukungan, bantuan, support dan

persahabatannya selama ini dan semoga kesuksesan menjadi milik kita.

12. Semua rekan-rekan Himpunan Mahasiswa Perikanan (HIMARIN),
BEM FAPERTA, Himpunan Mahasiswa Perikanan Indonesia
(HIMAPIKANI) dan Ikatan Pelajar Mahasiswa Fakfak (IPMAFAK)
Makassar yang tidak dapat kami sebutkan namanya satu-persatu
yang banyak membantu kami dari awal hingga selesainya
penulisan Skripsi ini.

Penulis menyadari skripsi ini masih jauh dari tahap kesempurnaan, olehnya itu segala kritik dan saran yang sifatnya membangun sangat penulis harapkan demi kesempurnaan skripsi ini. Akhir kata semoga skripsi ini dapat bermanfaat bagi kita semua terutama bagi penulis sendiri, amiin.

Makassar, 14 Juni 2011

Penulis

DAFTAR ISI

		Па	aman
HALA	MAN.	JUDUL	i
HALA	MAN	PENGESAHAN	ii
HALA	MAN I	PERSETUJUAN	iii
ABST	RAK		iv
KATA	PENG	SANTAR	V
DAFT	AR ISI		vi
DAFT	AR TA	BEL	vii
		MBAR	viii
		MPIRAN	ix
		ULUAN NIVERSITAS	1/
i. PE	NDAH	ULUAN	
	1.1	Latar Belakang	1
	1.2	Tujuan dan Kegunaan	2
II. TIN	NJAUA	N PUSTAKA	
	2.1	Klasifikasi dan Ciri Morfologi	3
	2.2	Habitat dan Daerah Penyebaran	8
	2.3	Seksualitas dan Reproduksi	10
	2.4	Makanan dan Cara Makan	11
	2.5	Salinitas	14
III BAE	TODE	PENELITIAN	
III. IVIL	LIODL	FEMELITIAN	
	3.1	Waktu dan Tempat	16
	3.2	Alat dan Bahan	16
	3.3	Wadah Penelitian	17
	3.4	Hewan Uii	17

	3.5	Pakan Uji	18
	3.6	Prosedur Penelitian	19
	3.7	Rancangan Percobaan	20
	3.8	Pengukuran Peubah	21
	3.9	Analisa Data	24
IV. HAS	SIL D	OAN PEMBAHASAN	
	4.1	Pertumbuhan Berat Rata-Rata Harian Abalon Tropis	25
	4.2	Laju Pertumbuhan Lebar Spesifik	28
	4.3	Laju Pertumbuhan Panjang Spesifik	30
	4.4	Parameter Kualitas Air	32
V. KES	SIMP	ULAN DAN SARAN	
	5.1	Kesimpulan	34
	5.2	Saran	34
DAFTA	R PU	STAKA	35
LAMPIR	RAN		

DAFTAR TABEL

Nome	or	Halama
	Teks	
1.	Alat dan Bahan Serta Kegunaan Dalam Penelitian	16
2.	Parameter Kualitas Air, Waktu Pengukuran dan Alat Yang Digunakan Selama Penelitian	23
3.	Nilai Rata-Rata Laju Pertumbuhan Berat Spesifik Harian Abalon Tropis Pada Saat Perlakuan	25
4.	Nilai Rata-Rata Pertumbuhan Lebar Spesifik Harian Abalon Pada Setiap Perlakuan	28
5.	Nilai <mark>Ra</mark> ta-Rata Laju P <mark>ert</mark> umbuhan Panjang Spesifik Hari <mark>an</mark> Abalon Pada Setiap Perlakuan	30
6.	Kisaran Parameter Kualitas Air yang Diamati Selama Penelitian	. 32

DAFTAR GAMBAR

lomor Halan	nan
Teks	
Sumber Anatomi Abalon (<i>H. asinina</i>) Tanpa Cangkang 8	3
Wadah Penelitian dan Kotak Plastik Berbentuk Persegi Panjang 1	17
3. Gam <mark>bar Hewan Uji Induk Abalon Tropis (<i>Haliotis Asinin</i>a)1</mark>	18
Jenis Rumput Laut Gracillaria lichenoides dan Kappaphicus alvarezi	18
5. Tata <mark>Le</mark> tak Satuan Percobaan	20
6. Pen <mark>guk</mark> uran Berat He <mark>w</mark> an Uji Dengan Menggunakan <mark>Ti</mark> mbangan Elektik	21
7. Pengukuran Lebar dan Panjang Cangkang Dengan <mark>Me</mark> ngunakan Mistar Geser	21
8. <mark>Histogra</mark> m Laju Pertumbuhan Berat Spesifik Ab <mark>alon (<i>haliotis</i> Asinina</mark>) pada setiap perlakuan 2	26
9. Histogram Laju Pertumbuhan Lebar Spesifik Harian Abalon (Haliotis Asinina) pada Setiap Perlakuan	29
10.Histogram Laju Pertumbuhan Panjang Spesifik Harian Abalon 3	31

DAFTAR LAMPIRAN

Noi	nc	or Ha	laman
		Teks	
	1.	Hasil Perhitungan Berat Rata-Rata Laju Pertumbuhan Harian Abalon Tropis Selama Penelitian	38
	2.	Hasil perhitungan Berat Rata-Rata Laju Pertumbuhan Harian Abalon Selama Penelitian	39
,	3.	Analisis Ragam Laju Pertumbuhan Berat Rata-Rata Abalon Tropis	39
•	4.	Hasil Pengamatan Lebar Rata-Rata dan Laju Pertumb <mark>uha</mark> n Lebar Spesifik Harian Abalon	40
;	5.	Hasi <mark>l P</mark> engamatan Lebar Rata-Rata dan Laju Pertumb <mark>uh</mark> an Leba <mark>r S</mark> pesifik Harian Abalon	41
(6.	Hasil Analisis Ragam Laju Pertumbuhan Lebar Rata-Rata Abalon Tropis	41
1	7.	Hasil Pengamatan Nilai Rata-Rata Pertumbuhan Panjang dan Laju Pertumbuhan Panjang Spesifik Harian Abalon	42
	8.	Hasil Pengamatan Nilai Rata-Rata Pertumbuhan Panjang dan Laju Pertumbuhan Panjang Spesifik Harian Abalon	43
,	9.	Analisis Ragam Laju Pertumbuhan Panjang Rata-Rata Abalon	42

PENDAHULUAN

1.1. Latar Belakang

Perairan Sulawesi Selatan, merupakan perairan yang memiliki sumberdaya abalon yang cukup potensial. Potensi ini perlu dikelola sebaik mungkin agar dapat memberikan manfaat yang optimal, bagi manusia maupun bagi sumberdaya itu sendiri. Untuk menunjang pengelolaan tersebut, status dan kondisi sumberdaya abalon di perairan tersebut perlu diketahui lebih dahulu.

Salah satu jenis biota laut yang hidup di daerah terumbu karang dari jenis Moluska yang bernilai ekonomis tinggi adalah abalon (*Haliotis asinina*). Abalon merupakan salah satu komoditas laut yang memiliki nilai ekonomis yang cukup tinggi. Jika abalon dibudidayakan dengan teknologi yang tepat akan menghasilkan keuntungan yang besar karena hampir seluruh penduduk di dunia sangat menggemari abalon. Di negara-negara lain seperti Jepang, Selandia Baru, Taiwan, Cina, Australia, Afrika Selatan dan Korea Selatan, abalon sudah dibudidayakan dengan menggunakan teknologi yang canggih dan tepat guna (Romimohtarto dan Sri Juwana, 2001). Abalon merupakan makanan favorit dan bergengsi di Jepang dan Hongkong. memiliki kandungan protein 71,99%, lemak 3,2%, serat 5,6%, abu 11,11% dan kadar air 0,60% (Anonim, 2007).

Kebutuhan abalon di pasaran dunia semakin meningkat, baik dalam bentuk segar maupun olahan. Indonesia mulai mengekspor abalon pada tahun 2005 ke Jepang, Cina, Singapura dan Hongkong (Anonim,2007). Permintaan abalon dari negara tersebut cenderung semakin meningkat. Dari data Dinas Perikanan dan Kelautan Provinsi Nusa Tenggara Barat menunjukan bahwa setiap bulan jumlah ekspor abalon sekitar 600-950 kg (Anonim,2007). Volume ekspor tersebut masih sangat rendah karena hanya mengandalkan dari hasil tangkapan nelayan. Untuk mengantisipasi terjadi kelebihan tangkap, maka diperlukan upaya untuk meningkatkan jumlah populasi abalon tropis di alam, yaitu dengan usaha pembenihan yang selanjutnya ditebar ke alam (restoking) atau dibudidayakan di keramba.

Dalam usaha budidaya abalon, pakan merupakan salah satu faktor penting selain kesesuaian lingkungan budidaya. Selama ini penelitian pemberian berbagai jenis pakan untuk pertumbuhan induk abalon belum banyak dilakukan. Olehnya itu penelitian ini perlu dilakukan

1.2. Tujuan dan Kegunaan

Penelitian ini dilakukan dengan tujuan untuk mengetahui pengaruh jenis-jenis rumput laut terhadap pertumbuhan induk abalon tropis *Hallotis* asinina.

Kegunaan penelitian ini diharapkan dapat memberikan informasi dasar dalam usaha budidaya abalon, terutama tentang pengaruh

pemberian pakan, sehingga dapat digunakan untuk keperluan usaha pembenihan dan budidayanya.

BAB II

TINJAUAN PUSTAKA

2.1. Klasifikasi dan Ciri Morphologi

Klasifikasi abalon *H.asinina Linnaeus*,1758. **M**enurut Hahn (1989 dan Lindberg 1992) adalah sebagai berikut :

Phylum Mollusca

Class Gastropoda

Subclass Prosobranchia

Superorder Vetigastropoda

Order Archaeogastropoda

Suborder Zygobranchia

Superfamily Pleurotomariacea

Family Haliotidae Rafinesque, 1915

Genus Haliotis

Sub Genus Teinotis Adam & adams, 1854

Spesies Haliotis asinine Linnaeus, 1758

Linberg (1992) menyatakan bahwa family Halioti dae hanya mempunyai satu genus yaitu Haliotis. Genus Haliotis telah teridentifikasi sebanyak 100 spesies dan ada 22 jenis diantaranya yang merupakan spesies yang bernilai ekonomis penting di dunia.

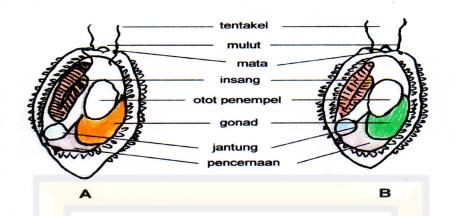
Abalon adalah kekerangan gastropoda termasuk dalam family Haliotidae genus Haliotis, terdiri sekitar 70 spesies, tersebar di seluruh dunia. Pertumbuhan abalon sangat lambat sekali, mempunyai satu tutup, banyak di perairan dangkal dan berbatu. Kulit abalon mempunyai suatu baris berpori-pori sebagai tempat pernafasan, pori-pori ini terletak sepanjang tepi kirinya. (Anonim, 1980, Fallu, 1991).

Menurut Crofts (1992 dalam Andy Omar, 1999), abalon termasuk kedalam subkelas Streptoneura dari kelas Gastropoda. Streptoneura berarti memiliki torsi organ dalam (visceral mass), terdiri atas dua ordo yaitu Aspridobranchia dan Pectinibrancia

Abalon yang dikenal di dunia dan memiliki nilai ekonomis penting diantaranya adalah: *H. discus, H. discus hannai, H. cachherodi, H. rubber, H. diversicolor supertexta, H. fulgens, H. kamtschatkana, H. gigantea, H. iris, H. laevigata, H. corrugata, H. midae, H. rubra, H. rufescens, H. tuberculata, H.assimilis, H.roei, H. australis, H. sieboldi, H. sorenseni, H. virginea, dan H. walallensis (Andy Omar, 1999; Linberg, 1992; Hahn, 1989; Gallardo, 2007).*

Spesies abalon yang berasal dari daerah tropis adalah Haliotis asinina, H. squamata, H. ovina, H. crebrisculpta, H. varia, H. planata, dan H. glabra. (Dharma, 1998. Gallardo (2007) menyatakan bahwa spesies abalon yang kecil ditemukan di daerah

tropis yaitu: *H. iris, H. asinina, H. glabra, H. ovina, H. diversicolor* supertexta, dan *H. varia*.


Ciri-ciri cangkang *H. asinina* adalah berbentuk oval agak lonjong, arah pertumbuhan cangkang searah jarum jam (dextral) dengan ukuran panjang rata-rata dua kali ukuran lebarnya. Warna dasar cangkangnya hijau kecoklatan dengan lurik-lurik coklat. Cangkangnya berupa lempengan tipis yang memanjang. Terdapat barisan lubang di sepanjang sisi punggung bagian atas berjumlah rata-rata antara lima sampai enam lubang yang terbuka sesuai dengan umur cangkang, dengan tekstur permukaan cangkang yang relatif halus/licin.

Bagian dalam cangkang abalon memiliki warna yang menarik dan berkilau. Warna cangkang bervariasi sesuai dengan habitat tempat tinggalnya, bagian dalam kulit cangkang memiliki lapisan berwarna-warni yang menutupi tubuh bagian kiri abalon yang masih berukuran kecil. Abalon yang berukuran besar pada umumnya tumbuh melebihi ukuran cangkang karena otot atau ukuran mantel mengalami pertumbuhan dan perlenturan sehingga cangkang tidak mampu menutupi keseluruhan dari tubuhnya. (Immamura, 2005).

Anatomi

Bentuk cangkang abalon sangat unik yaitu satu lembar cangkang yag terbuka lebar dengan sederetan lubang pada tepi sebelah kiri. Lubang-lubang tersebut terus terbentuk sepanjang hidupnya, lubang baru dibentuk sementara lubang yang lama ditutup. Lubang-lubang tersebut digunakan sebagai lubang respirasi (pernapasan), sanitasi (pengeluaran kotoran) dan reproduksi (pengeluran sperma untuk siput jantan dan telur untuk siput betina). Jumlah lubang yang terbuka berbeda untuk setiap jenis abalon. (Setyono, 2009)

Abalon mempunyai sepasang mata, satu mulut, dan satu tentakel penghembus yang berukuran besar. Di dalam mulutnya terdapat lidah parut (radula) yang berfungsi mengerik alga menjadi ukuran yang dapat dicerna. Insang terletak setelah mulut dan terdapat di bawah pori-pori yang berhubungan dengan pernapasan. Sirkulasi air berlangsung di bagian bawah tepi cangkang kemudian mengalir menuju ke insang dan dikeluarkan melalui pori yang terdapat di bagian cangkang. Abalon (Haliotis) tidak memiliki struktur otak yang jelas dan nyata, sehingga hewan ini dianggap sebagai salah satu hewan primitif. Hewan ini juga memiliki hati di bagian sisi atas. Darah mengalir melewati arteri utama, pembuluh darah dan sinus (Anonim, 2001.). Anatomi abalon dapat dilihat pada Gambar 1 (Hadijah, 2010)

Gambar 1. Struktur Anatomi Abalon *H. asinina* Tanpa Cangkang A Jantan, B. Betina) Sumber: Hadijah (2010)

2.2 Habitat dan Daerah Penyebaran

Secara umum abalon hidup di daerah sublitoral yang berbatu-batu dan tidak terlalu dalam, baik pada daerah yang bermusim empat maupun di perairan tropis (Andy Omar, 1999).

Abalon dapat ditemukan di sepanjang pantai Baja California,
Uni Soviet, Alaska, Korea, Jepang, Cina, Taiwan, Kamboja,
Thailand, Indonesia, Srilanka, India, Tanzania, Mesir, Perancis, Italia,
Yunani, Yugoslavia, Pantai Gading, Tanjung Pengharapan.

Pada siang hari atau suasana terang, kerang abalon lebih cenderung bersembunyi di karang-karang dan pada suasana malam atau gelap lebih aktif melakukan gerakan berpindah tempat. Ditinjau dari segi perairan, kehidupan kerang sangat dipengaruhi oleh kualitas air. Secara umum, spesies kerang abalon mempunyai

toleransi terhadap suhu air yang berbeda-beda, contoh: H. kamtschatkana dapat hidup dalam air yang lebih dingin sedangkan H. asinina dapat hidup dalam air bersuhu tinggi (30°C). Di alam terdapat hubungan terbalik antara rata-rata suhu air laut dengan ukuran maksimum abalon. Pada abalon H. midae yaitu spesies bersuhu rendah di Afrika Selatan, terjadi penurunan pertumbuhan dan peningkatan kematian bilamana suhu di atas nilai rata-rata yang dibutuhkan (Sales dan Britz, 2000).

Kerang abalon biasa ditemukan pada daerah berkarang yang sekaligus dipergunakan sebagai tempat menempel karang abalon bergerak dan berpindah tempat dengan menggunakan satu organ yaitu kaki. Gerakan kaki yang sangat lambat sangat memudahkan predator untuk memangsanya.

Larva abalon menetap pada dasar perairan dengan melekatkan diri pada bebatuan atau benda lain dengan menggunakan rambut (cilia) dan mulai tumbuh hingga cangkangnya terbentuk (Anonim, 2001). Jika memperoleh tempat melekat yang cocok, abalon akan tumbuh hingga dewasa di tempat tersebut.

Penyebaran kerang abalon sangat terbatas. Tidak semua pantai berkarang terdapat kerang abalon. Secara umum, kerang abalon tidak ditemukan di daerah estuaria yaitu pertemuan air laut dan air tawar yang biasa terjadi di muara sungai. Ini mungkin

disebabkan oleh beberapa faktor, di antaranya adanya air tawar sehingga fluktuasi salinitas yang sering terjadi, tingkat kekeruhan air yang lebih tinggi dan kemungkinan juga karena konsentrasi oksigen yang rendah (Fallu, R. 1991).

Abalon juga ditemukan meluas ke bagian utara di daerah dingin. Kemungkinan juga ditemukan di daerah barat dari Tanjung Spencer hingga pantai pesisir daerah Yakuta (Immamura, 2005) Abalon merah (rufescens) terdapat di pantai Samudera Pasifik dan merupakan abalon yang memiliki ukuran terbesar, biasanya berukuran antara 6-8 inci dengan tentakel yang lebih panjang dibanding cangkangnya.

Kehidupan organisme dalam komunitas perairan dipengaruhi oleh kompetisi dalam dan antar spesies, lingkungan fisik, reproduksi, ketersediaan makanan, pasang surut, kebiasaan makanan dan arus air. Secara umum abalon hidup di daerah sublitoral yang berbatubatu dan tidak terlalu dalam, baik pada daerah yang bermusim empat maupun di perairan tropis (Andy Omar, 1999).

2.3 Seksualitas

Gonad abalon berbentuk bulan sabit, pada betina akan berwarna hijau atau keabu-abuan. Sedangkan pada jantan berwarna krem atau putih kekuning-kuningan yang tersebar di balik sisi dorsal. Adanya sperma dan oyum di dalam kolom air dapat merangsang

abalon lain untuk mengeluarkan telur. Hal ini merupakan cara abalon untuk meningkatkan fertilisasi. Jika memperoleh tempat melekat yang cocok abalon akan tumbuh hingga dewasa di tempat tersebut. Kemungkinan larva untuk dapat bertahan hidup sangat kecil. Kebanyakan tiram dan kekerangan menghasilkan telur yang banyak setiap kali memijah tetapi tingkat kematiannya cukup tinggi hingga dapat mencapai 99% (Anonim, 2001)

Jenis kelamin abalon terpisah antara jantan dan betina (dooecious) dan sudah dapat dibedakan pada individu yang gonadnya mulai berkembang. Jenis kelamin dapat dibedakan berdasarkan warna gonadnya. Gonad betina pada umumnya berwarna coklat, hijau atau kehijauan, sedangkan gonad jantan berwarna putih atau krem (Litaay, 2005; Anonim, 2007).

2.4 Makanan dan Cara Makan

Menurut Andy Omar (1999), studi tentang kebiasaan makanan organisme sangat penting dan memiliki hubungan dengan seluruh aspek kehidupan organisme. Secara umum, abalon merupakan hewan herbivor dan memakan banyak jenis makroalga, tetapi mereka menunjukkan preferensi yang jelas jika diberi kesempatan untuk memilih. Berdasarkan studi hasil laboratorium, tampak jelas bahwa abalon dewasa menyenangi alga merah (Gallardo, 2007).

Organisme dapat dikelompokkan berdasarkan pada makanannya, yaitu sebagai pemakan plankton, pemakan tanaman, pemakan dasar, pemakan detritus, predator dan omnivore. Berdasarkan pada jumlah variasi dari macam-macam makanan, organisme dapat dibagi menjadi euryphagic yaitu organisme yang makanannya bermacam-macam, stenophagic yaitu organisme yang jenis makanannya sedikit, dan monophagic ialah organisme yang makanannya terdiri dari satu macam makanan saja (Effendie, 1997).

Makanan utama abalon adalah kebanyakan dari alga laut dan <mark>gan</mark>ggang. Bagi abalon dewasa mereka dapat hidup dari potongan ganggang yang terlepas atau hanyut oleh arus. Abalon yang telah dibudidayakan kebanyakan telah diberi makanan olahan yang dianggap lebih efisien, berkualitas dan lebih sehat. Pemberian rumput laut sebagai makanan abalon akan mendapat masalah karena pada waktu tertentu rumput laut tidak tersedia, hal ini dikarenakan pertumbuhan rumput laut sangat dipengaruhi oleh musim. Ketiadaan rumput laut akan membuat pertumbuhan abalon menjadi menurun dan hal ini tentunya akan merugikan pembudidaya abalon. Keuntungan pemberian makanan buatan adalah komposisi nutrisinya dapat diatur, sehingga didapatkan komposisi nutrisi yang optimal untuk kebutuhan nutrisi abalon (Fallu, 1991). Secara alami, abalon cenderung tinggal di suatu tempat sambil menantikan makanan yang hanyut atau terbawa arus. Mereka akan berpindah

tempat ketika makanan yang ada di sekitarnya sudah tidak memadai (Anonim, 2001).

Rumput laut mempunyai kandungan nutrisi cukup lengkap. Secara kimia rumput laut terdiri dari : air (27,8%), protein (5,4%), karbohidrat (33,3%), lemak (8,6%) serat kasar (3%) dan abu (22,25%). Selain karbohidrat, protein, lemak dan serat, rumput laut juga mengandung enzim, asam nukleat, asam amino, vitamin (A,B,C,D, E dan K) dan makro mineral seperti nitrogen, oksigen, kalsium dan selenium serta mikro mineral seperti zat besi, magnesium dan natrium. Kandungan asam amino, vitamin dan mineral rumput laut mencapai 10 -20 kali lipat dibandingkan dengan tanaman darat.

Cangkang abalon menjadi penanda atau ciri dari jenis ganggang atau alga yang menjadi makanannya. Abalon yang masih muda (juvenile) cenderung hidup di antara celah batu karang dan mengambil makanan berupa diatom yang tumbuh di permukaan batu karang. Dari cara makanannya dapat diketahui bahwa cara makanan dari organisme abalon adalah bersifat grazer (merumput). Laju pertumbuhan abalon sangat cepat ketika ruang dan makanan cukup tersedia di sekitarnya. Dengan mengetahui kebiasaan makanan suatu organisme dapat dilihat hubungan ekologi di antara organisme di suatu perairan, misalnya bentuk-bentuk pemangsaan, persaingan dan rantai makanan. Menurut Priambodo, dkk. 2006. Pakan awal

berupa bentik *Nitzschia sp* benih abalon umur 2-25 hari sudah dapat memakan rumput laut jenis gracilaria sampai umur 3 bulan (cangkang rata-rata 10 mm) Jadi, makanan merupakan faktor yang menentukan bagi populasi, pertumbuhan dan kondisi suatu organisme. Sebaliknya, macam makanan suatu spesies organisme biasanya tergantung pada umur, tempat dan waktu (Effendie, 1997)

Perbedaan tingkat kesukaan makanan pada abalon disebabkan oleh kemampuan abalon mencerna komponen tertentu misalnya karbohidrat. Abalon di alam akan memilih makanan yang memiliki keseimbangan nutrisi tetapi pada suatu waktu hal ini dapat berubah karena dipengaruhi oleh beberapa faktor, misalnya ketersediaan pakan, keberadaan bahan kimia serta ketidakmampuan abalon mengkonsumsi makanan keras (Fleming, 1995).

2.5 Salinitas

Salinitas merupakan konsentrasi total dari semua ion yang larut dalam air dan dinyatakan dalam bagian perseribu (ppt) yang setara dengan gram perliter (Boyd, 1990). Secara fisiologi salinitas air sangat memepengaruhi sistem osmoregulasi. Perbedaan salinitas antara air media dengan induk akan menimbulkan kondisi yang tidak seimbang.

Yamagami (1988) menyatakan bahwa faktor lingkungan mempengaruhi laju perkembangan terutama faktor suhu dan

salinitas. Dalam kondisi yang sesuai dengan kondisi kehidupan alaminya maka akan tumbuh optimum. Selanjutnya dikatakan faktor ini sangat berperan untuk meningkatkan kerja enzim chorinase yang terdiri dari pseudokcotine.

BAB III

METODE PENELITIAN

3.1. Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan pada bulan September – November 2009 di Balai Budidaya Air Payau (BBAP) Takalar

3.2. Alat dan Bahan

Alat dan bahan yang digunakan dalam penelitian ini dapat dilihat pada Tabel 1

Tabel 1. Alat dan Bahan serta kegunaan dalam penelitian

No	Alat dan Bahan	Kegunaan
1.	Blower	Mensuplay O₂ ke wadah penelitian
2.	Thermometer	Me <mark>ngukur</mark> Suhu
3.	DO Meter	Mengukur O₂ Terlarut (DO)
4.	Kertas Lakmus	Mengukur pH
5.	Timbangan Elektrik	Menimbang Hewan Uji
6.	Pipa Paralon	Tempat bersembunyi hewan uji
7.	Induk Abalon	Hewan Uji
8.	Tangki Fiber	Wadah penelitian
9.	Gracillaria lichenoides	Pakan Percobaan
10.	Euchema cottoni (Kappaphicus alvarezi)	Pakan Percobaan
11.	Mistar Geser	Mengukur Panjang Hewan Uji

3.3. Wadah Penelitian

Wadah yang digunakan dalam penelitian ini adalah tangki fiber kapasitas 1 ton. Tangki fiber ini dilengkapi sistem aerasi untuk mensuplai oksigen kedalam wadah penelitian. Untuk penempatan abalon disediakan kotak plastik berbentuk segi empat yang disusun saling telungkup sebanyak 9 buah.(Gambar 2)

Gambar 2. Wadah Penelitian dan kotak plastik berbentuk persegi panjang

3.4 Hewan Uji

Hewan uji yang digunakan dalam penelitian ini adalah abalon tropis (*Haliotis asinina*) sebanyak 18 ekor. Dalam setiap wadah plastik diisi 2 ekor abalon. (Gambar 3)

Gambar 3. Hewan Uji Induk Abalon Tropis

3.5 Pakan Uji

Pakan uji yang digunakan adalah rumput laut jenis *Gracillaria lichenoides* dan *Kappaphicus alvarezi*. Adapun jenis rumput lautnya dapat dilihat pada Gambar 4 dan 5.

Gambar 4. Gracillaria lichenoides

Gambar 5. Kappaphicus alvarezi

3.6 Prosedur Penelitian

1. Persiapan

Tahap persiapan ini diawali dengan mempersiapkan alat dan bahan yang digunakan dalam penelitian. Selanjutnya wadah disetting. Sesuai dengan rancangan penelitian tangki fiber berkapasitas 1 ton di isi air yang bersalinitas 32 ppt. Air dalam wadah ini diberi aerasi yang cukup. Keranjang kecil berbentuk kotak yang berukuran 20 x 10 cm dipersiapkan sebagai wadah untuk menempatkan induk abalon dan pakan rumput laut.

2. Pelaksanaan

Hewan uji ditempatkan kedalam setiap keranjang kecil, berukuran 20 cm x 10 cm masing-masing sebanyak 2 ekor induk abalon. Jumlah keranjang kecil yang saling telungkup yang digunakan sebanyak 9 buah sesuai perlakuan. Kedalam setiap keranjang yang telah berisi abalon, di beri pakan rumput laut sesuai perlakuan. Jumlah pakan yang digunakan untuk setiap keranjang adalah 10 % dari bobot induk.

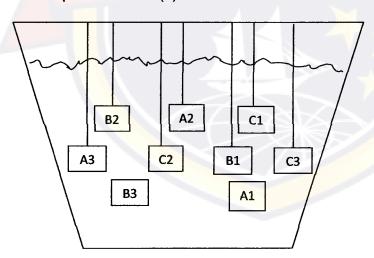
Pemberian pakan dilakukan setiap hari, jika berkurang ditambahkan dan dicatat. Pemberian pakan disesuaikan dengan perlakuan yaitu : Perlakuan A, Perlakuan B dan Perlakuan C. Pengukuran beberapa parameter kualitas air meliputi : suhu, oksigen

terlarut dan pH dilakukan sebelum dan sesudah pergantian air. Penyiponan dilakukan setiap hari.

3.7 Rancangan Percobaan

Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap (RAL) yang terdiri dari 3 perlakuan dan 3 kali ulangan sehingga diperoleh 9 satuan percobaan.

Ketiga perlakuan tersebut adalah:


Perlakuan A : Gracillaria lichenoides (100 %)

Perlakuan B : Kappaphicus alvarezi (100 %)

Perlakuan C: Kombinasi antara G. lichenoides (50 %) dan K.

Alvarezi_(50 %)

Penempatan wadah penelitian dilakukan secara acak seperti yang terlihat pada Gambar (6)

Gambar 6. Tata Letak Satuan Percobaan

3.8 Pengukuran Peubah

Beberapa peubah yang diukur dalam penelitian ini adalah pertambahan berat, pertambahan lebar dan panjang cangkang hewan uji, yang pengukurannya dilakukan setiap 1 minggu sekali. Pertambahan berat hewan uji diukur dengan menggunakan timbangan elektrik dengan ketelitian 0,1 gr. Sedangkan pertambahan lebar dan panjang cangkang diukur dengan menggunakan mistar geser dengan ketelitian 1 mm. (Gambar 7 dan 8).

Gambar 7. Pengukuran Berat Hewan Uji dengan Menggunakan Timbangan elektrik

Gambar 8. Pengukuran Lebar dan Panjang Cangkang dengan Menggunakan Mistar Geser

Laju pertumbuhan rata-rata biomassa harian (specific growth rate) dihitung berdasarkan petunjuk rumus Zonneveld dkk (1991) sebagai berikut :

Dimana:

SGR: Laju Pertumbuhan berat rata-rata spesifik harian (%)

W_t : Berat rata-rata individu diakhir penelitian (g)

W_o : Berat rata-rata individu diawal penelitian (g)

t : Periode Waktu Penelitian (hari)

Laju pertumbuhan spesifik lebar harian dihitung dengan menggunakan rumus

Dimana:

SGR : Laju Pertumbuhan lebar rata-rata spesifik harian (%)

L_{tt}: Lebar rata-rata individu diakhir penelitian (mm)

L_{lo}: Lebar rata-rata individu diawal penelitian (mm)

t : Periode Waktu Penelitian (hari)

Laju pertumbuhan spesifik panjang harian dihitung dengan menggunakan rumus :

Dimana:

SGR : Laju Pertumbuhan panjang rata-rata spesifik harian (%)

L_{ht}: Panjang rata-rata individu diakhir penelitian (mm)

L_{ho}: Panjang rata-rata individu diawal penelitian (mm)

T2 : Periode Waktu Penelitian (hari)

Selain pengukuran peubah diatas dilakukan juga pengukuran parameter kualitas air sebagai data penunjang untuk setiap perlakuan. Parameter kualitas air yang diukur yaitu suhu, salinitas, pH dan oksigen terlarut. Waktu pengukuran dan alat yang digunakan dapat dilihat pada Tabel 2.

Tabel 2 Parameter Kualitas Air, Waktu Pengukuran dan Alat yang Digunakan Selama Penelitian

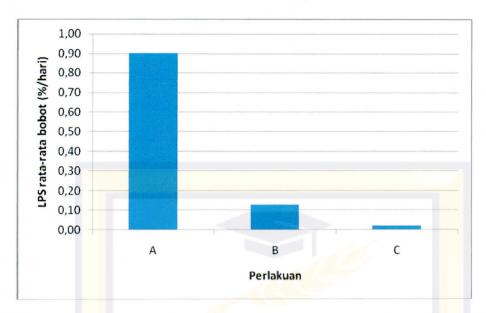
Parameter Parameter	Waktu Pengukuran	Alat yang Digunakan	
Salinitas	1 x sehari	Hand refraktometer	
pH	1 x sehari	Kertas pH	
Suhu	2 x sehari	Thermometer	
Oksigen Terlarut	2 x sehari	DO meter	

3.9 Analisis Data

Untuk mengetahui pengaruh perlakuan terhadap peubah yang diukur maka data hasil penelitian dianalisis dengan menggunakan analisis sidik ragam dengan menggunakan SPSS versi 10, sedangkan data kualitas air dianalisis secara deskriptif.

BOSOWA

BAB IV


HASIL DAN PEMBAHASAN

4.1 Pertumbuhan Bobot Rata-Rata Harian Abalon Tropis (Haliotis asinina)

Hasil perhitungan berat rata-rata laju pertumbuhan harian abalon Tropis selama penelitian dapat dilihat pada Tabel Lampiran 1 dan 2. Dari data tersebut didapatkan nilai rata-rata laju pertumbuhan bobot spesifik harian abalon pada perlakuan A dengan pemberian *Gracillaria lichenoides*, Perlakuan B dengan pemberian pakan *Kappaphicus alvarezi*, perlakuan C dengan pemberian pakan Kombinasi antara *G. lichenoides* dan *K. Alvarezi I* hari (Tabel 3).

Tabel 3. Nilai Rata-rata Laju Pertumbuhan Berat Spesifik Harian abalon Tropis (Haliotis Asinina) pada setiap Perlakuan.

Perlakuan	Rata-rat	Rata-rata Bobot				
Feriakuari	Awal	28,72 27,50	LPS			
А	23,10	34,20	0,90			
В	27,22	28,72	0,13			
С	25,67	27,50	0,02			

Gambar 9.Histogram Laju Pertumbuhan Berat Spesifik Abalon (haliotis Asinina) pada setiap perlakuan

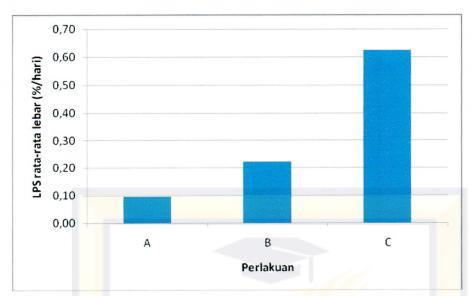
Berdasarkan nilai rata-rata laju pertumbuhan berat spesifik harian abalon yang didapatkan pada setiap waktu pengamatan sangat bervariasi. Namun pertambahan berat pada awal penelitian hingga hari 15 masih rendah, hal ini diduga disebabkan karena abalon masih melakukan adaptasi terhadap lingkungan dan makanan yang diberikan.

Berdasarkan histogram pada Gambar 9 dan nilai rata-rata laju pertumbuhan berat spesifik harian abalon pada Tabel 3 nampak bahwa perlakuan A dengan pemberian pakan *Gracillaria lichenoides* memperlihatkan pertumbuhan yang lebih besar dari pada perlakuan lainnya. Hal ini diduga sebagai pengaruh kebiasaan makannya di alam yang biasa memakan alga merah. Sesuai dengan pendapat Gallardo

(2007) yang menyatakan bahwa berdasarkan studi hasil laboratorium tampak jelas bahwa abalon dewasa menyenangi alga merah. Gracillaria lichenoides merupakan spesies dari alga merah (Rhodophyceae)

Beberapa hasil penelitian menunjukkan bahwa makanan utama bagi abalon dewasa adalah kebanyakan dari alga laut dan ganggang (Hadijah, 2010). Bagi abalon dewasa dapat hidup dari potongan ganggang yang terlepas atau hanyut oleh arus (Mc Shane, 1992 *dalam* Hadijah, 2010).

Analisis ragam (Lampiran 3) menunjukkan bahwa pemberian pakan Gracillaria lichenoides, Kappaphicus alvarezi dan kombinasi antara G. Lichenoides dan K. Alvarezi tidak memberikan pengaruh yang sangat nyata (P>0,05) terhadap laju pertumbuhan berat spesifik harian abalon. Hal ini berarti bahwa pemberian pakan G. lichenoides ataupun K. alvarezi memperlihatkan pengaruh yang sama terhadap pertumbuhan berat abalon.


4.2 Laju Pertumbuhan Lebar Spesifik

Data pengamatan rata-rata pertumbuhan lebar dan laju pertumbuhan lebar spesifik harian abalon (Lampiran 4 dan 5). Dari data tersebut diperoleh nilai rata-rata pertumbuhan lebar dan laju pertumbuhan lebar spesifik harian (LPLS) abalon dengan pemberian pakan *Gracillaria lichenoides, Kappaphicus alvarezi* dan Kombinasi antara *G. lichenoides* dan *K. Alvarezi*. Disajikan pada Tabel 4 berikut.

Tabel 4. Nilai Rata-rata Pertumbuhan Lebar Spesifik Harian Abalon (Haliotis Asinina) pada Setiap Perlakuan.

Darlate	Rata-ra	Loc	
Perla <mark>ku</mark> an	Awal	Akhir	LPS
А	2,50	2,60	0,10
В	2,20	2,42	0,22
С	2,10	2,68	0,62

Berdasarkan Tabel 4 dan Gambar 9 nampak bahwa pertumbuhan lebar abalon dan laju pertumbuhan lebar spesifik harian yang tertinggi diperoleh pada perlakuan C dengan pemberian pakan kombinasi antara G.lichenoides dan K.Alvarezi kemudian perlakuan B dengan pemberian pakan Kappaphicus Alvarezi dan perlakuan A dengan pemberian pakan gracillaria lichenoides.

Gambar 10. Histogram Laju Pertumbuhan Lebar Spesifik Harian Abalon (Haliotis Asinina) pada Setiap Perlakuan

Tingginya nilai rata-rata laju pertumbuhan lebar spesifik harian abalon pada perlakuan C dengan pemberian pakan antara *G.lichenoides* dan *K.Alvarezi* diduga sebagai pengaruh nilai gizi yang dikandung oleh *Gracillaria lichenoides* terutama kandungan protein dan lemaknya yang lebih tinggi. *Gracillaria lichenoides* memiliki kandungan protein 1,81 %, lemak 49,24, abu 4,50 dan serat kasar 27,39. Dimana protein dan lemak yang terkandung dalam makanan sangat dibutuhkan oleh organisme untuk menghasilkan tenaga dan untuk pertumbuhan, hal ini dijalan dengan pendapat Effendie (1979) bahwa salah satu faktor yang berpengaruh terhadap pertumbuhan adalah makanan.

Analisis sidik ragam laju pertumbuhan lebar spesifik harian abalon (Lampiran 6) menunjukkan bahwa dengan pemberian pakan yang berbeda pada setiap perlakuan memperlihatkan laju pertumbuhan lebar

spesifik yang sama pula yaitu tidak memberikan pengaruh yang nyata (P>0,05). Hal ini menunjukkan bahwa dengan pemberian pakan antara G.lichenoides dan K.Alvarezi pada ketiga perlakuan yang berbeda tidak berpengaruh nyata terhadap laju pertumbuhan lebar cangkang abalon.

4.3 Laju Pertumbuhan Panjang Spesifik

Berdasarkan hasil pengamatan nilai rata-rata pertumbuhan panjang dan laju pertumbuhan panjang spesifik harian abalon yang terlihat pada Lampiran 7 dan Lampiran 8 maka diperoleh nilai rata-rata laju panjang spesifik harian abalon (Tabel 5) dan dapat digambarkan histogram tentang laju pertumbuhan panjang spesifik harian abalon (Gambar 11)


Tabel 5. Nilai Rata-rata Laju Pertumbuhan Panjang Spesifik Harian Abalon (*Haliotis Asinina*) pada setiap perlakuan.

Perlakuan	Rata-ra	Rata-rata Panjang				
Perlakuari	Awal	Akhir	LPS			
А	4,98	5,27	0,13			
В	4,78	5,03	0,12			
С	4,93	5,40	0,22			

Nilai rata-rata pertumbuhan panjang dan laju pertumbuhan panjang spesifik harian abalon pada setiap pengamatan sebesar 0,12 – 0,22 mm. Karena pertumbuhan bersifat allometric yaitu pertambahan panjang tidak

secepat pertambahan berat dan pertambahan panjang tidak secepat pertambahan lebarnya (Effendi, 2002).

Berdasarkan analisis ragam laju pertumbuhan panjang spesifik abalon memperlihatkan hasil yang tidak berbeda sangat nyata (P > 0,05) (Lampiran 9). Hal ini menunjukkan bahwa dengan pemberian pakan *G. Lichenoides, K. Alvarezi* dan kombinasi antara *G. Lichenoides* dan *K. Alvarezi* tidak berpengaruh sangat nyata terhadap laju pertumbuhan panjang spesifik abalon.

Gambar 11. Histogram Laju Pertumbuhan Panjang Spesifik Harian Abalon

Melihat laju pertumbuhan spesifik harian berat, lebar dan panjang abalon yang diperoleh pada setiap perlakuan memperlihatkan pengaruh yang sama. Hal ini disebabkan karena abalon menyukai semua jenis rumput laut. Selain itu antara G. lichenoides dan K. alvarezi berasal dari general yang sama yaitu alga merah.

4.4 Parameter Kualitas Air

Selama penelitian berlangsung diperoleh data kisaran parameter kualitas yang disajikan pada Tabel 6.

Tabel 6. Kisaran Parameter Kualitas Air Yang Diamati Selama Penelitian

Parameter	Kisaran	Rata-rata	
Suhu (⁰ C)	27 – 30	28,5	
Salinitas (⁰ / ₀₀)	30 – 34	32	
pH	7-8	8,5	
Oksigen Terlarut (ppm)	4,5 – 7,2	5,9	

Berdasarkan pengukuran parameter kualitas air terlihat bahwa seluruh parameter masih berada pada kisaran yang layak untuk pertumbuhan abalon.

Selama penelitian berlangsung dilakukan pengukuran beberapa parameter kualitas air meliputi : suhu, oksigen terlarut, pH dan amoniak. Kisaran suhu selama penelitian ini yaitu 27 – 30 °C. Kisaran suhu pada penelitian masih layak untuk kehidupan induk sesuai dengan penelitian Saleh dan Murdjani (2006).

Kisaran oksigen pada penelitian ini yaitu 4,5 – 7,2 °C. Kandungan terlarut ini bersumber dari blower yang dipasang pada media penelitian. Kandungan oksigen ini masih layak untuk organisme air selama penelitian

dan menurut Mustika (2007) oksigen terlarut yang optimal dalam pembenihan abalon adalah 3,25 – 7,28 ppm.

Hasil pengamatan derajat keasaman (pH) kualitas air media penelitian berkisar 7 – 8. Kondisi pH air pada media selama pengamatan masih dalam batas yang layak dalam menunjang kelangsungan hidup induk abalon. Data pengukuran di lapangan dengan rata-rata 8,5. Menurut Mustika (2008) menyatakan bahwa dalam mendukung kehidupan abalon dalam pemeliharaan diperlukan pH air adalah 7,6 – 8,1.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan dapat ditarik beberapa kesimpulan sebagai berikut:

- 1. Dalam pemeliharaan abalon dewasa di bak terkontrol dapat menggunakan *Gracillaria lichenoides* atau *Kappaphicus alvarezi* atau kombinasi keduanya.
- Nilai rata-rata laju pertumbuhan berat spesifik abalon adalah 0,02 0,90, lebar 0,10 0,62 dan panjang spesifik abalon adalah 0,12 0,22 mm
- 3. Kualitas air untuk budidaya induk rata-rata 32 ppt sedangkan suhu dengan rata-rata 28,5 °C

5.2 Saran

Untuk budidaya induk abalon disarankan memberi pakan rumput laut jenis *G. Lichenoides, K. Alvarezi* atau kombinasi keduanya terhadap laju pertumbuhan abalon Tropis (*Haliotis asinina*). Untuk hasil yang lebih baik penelitian selanjutnya disarankan untuk memberi pakan tersebut pada juvenil abalon.

DAFTAR PUSTAKA

- Andy Omar, S. Bin. 1999. Food and growth in haliotis (Review). Jurnal Perikanan. Universitas Gajah Mada. Yogyakarta
- Andy Omar, S. Bin. Litaay & N. Anwar, 2006. The Occurrence of tropical abalone (Halitolis SPP). At Reef Flat of Bonetambu Island, Makassar, Jurnal Torani, Vol 16 (2) edisi Juni: 142-147.
- Anonim. 1980. Fisheries in Japan abalone and oyster. Japan Marine Products Photo Material Association. Japan. 225p.
- Anonim. 2001. World most experienced abalone consultan. San Rafael, California. (Diakses 9 Desember 2006).
- Anonim, 2007. Kerang Abalone Bernilai Ekonomi Tinggi. Koran Republika. Kamis, 5 Juli 2007 (Diakses tanggal. 14 Januari 2008).
- Boyd, C.E. 1990. Water Quality in Pons for Aquaculture Birmingham Publising Co. Alabama 420 P.
- Dharma, B. 1998. Siput dan Kerang Indonesia PT. Sarana Jakarta.
- Effendi, M. I., 1997. Biologi Perikanan. Yayasan Dewi Sri, Bogor.
- Effendi, M. I., 2002. Biologi Perikanan. Yayasan Dewi Sri, Bogor.
- Fallu, R. 1991. *Abalone Farming*. Fishing News Books A Division of Blackwell Scientific Publications Ltd. Osney Mead. Oxford.
- Fleming, A.E. 1995. Digestive Efficiency of the Australian Abalone Haliotis
 Rubra in Relation to Growth and Feed Preference.
- Gallardo, W. G. 2007. Aquaculture And Aquatic Resources management School Of Environment, Resources and development. Asian Institute of Technologi Thailand
- Hadijah 2010. Aspek Biologi dan Reproduksi Abalon Tropis (*Haliotis asinina*) diperairan Kepulauan Tana keke Kab.Takalar. Disertasi Program pasca Sarjana Universitas Hasanudin.

- Hahn, K. O. 1989. Survey of the commercially Immportant Abalon Species In The World. In: Handbook of culture of abalone and other marine gastropods (Hahn, K. O. ed). CRC Press, Inc, Boca Raton, Florida. Pp 3-11.
- Imamura, K. 2005. Abalone. Abalone Wildl. (Diakses 15 Desember 2006).
- Lindberg., D.R. 1992 Evolution, Distribution and Systematics of Haliotidae. In: Abalone of the word: biology, fisheries and culture.
- Litaay, M. 2005. Peranan Nutrisi Dalam Siklus Reproduksi Abalon. Jurnal Oseana. Volume XXX. Nomor 1. ISSN 0216-1877.
- Mustika. 2007. Pembenihan Abalon. Loka Budidaya Laut. Lombok. (Diakses 29 Juli 2009).
- Romimohtarto, K dan Juwana, S. 2001. *Biologi Laut, Ilmu Pengetahuan Tentang Biota Laut.* P3O LIPI. Jakarta.
- Saleh dan Murdjani. 2006. Budidaya Abalon (*Haliotis asinina*) Di Bak Sistem Indoor, Balai Besar Air Payau. Jepara.
- Sales J. dan Britz J. P. 2000. South African Abalon Culture Succeds Through Colta Boration, Word Aquaculture, Volume 3. P.44
- Setyono, D. E. 2009. Biologi dan Reproduksi Abalon. LIPI Press. Jakarta
- Yamagami, K. 1988. Mecanisme Of Hactching in Fish. PP. 447-449. Int. W.S. Hoar and D.J. Randall (eds) Fish Fisiologi. Vol. XI Academic Press Ind Sandiego.
- Zonneveld, Jouncey and Ross. 1991. Biologi Perikanan Yayasan Pustaka Nusantara, Jakarta.

Uji ANOVA untuk data Bobot

Lampiran 1. Hasil perhitungan berat rata-rata laju pertumbuhan harian abalon Tropis selama penelitian

Descriptives

						j	nfidence
						Interval f	
		N	Mean	td. Deviation	Std Error		Upper Bound
LPS B1	A (Gracillaria)	3	6.9400	8.4750	4.8931		27.9931
_	B (Kappaphyo	3	.0467	.0351	.0203	0406	.1339
	C (Kombinasi)	3	.1300	11.6116	6.7040	28.7149	28.9749
	Total	9	2.3722	7.9625	2.6542	-3.7483	8.4928
LPS B2	A (Gracillaria)	3	.7533	1.4176	.8185	-2.7682	4.2749
_	B (Kappaphyo		.1067	.3630	.2095	79 <mark>50</mark>	1.0083
	C (Kombinasi)	3	1.2300	2.2189	1.2811	-4.2819	6.7419
	Total	9	.6967	1.4158	.4719	39 <mark>16</mark>	1.7850
LPS_B3	A (Gracillaria)	3	.5633	.8633	.4984	-1.5811	2.7078
	B (Kappaphyo	3	.7133	.5877	.3393	7467	2.1733
	C (Kombinasi)	3	.9967	1.1671	.6739	-1.9027	3.8960
	Total	9	.7578	.8059	.2686	.1383	1.3773
LPS_B4	A (Gracillaria)	3	.1833	.0902	.0521	0407	.4074
	B (Kappaphyo	3	0533	.1286	.0742	3727	.2661
	C (Kombinasi	3	5267	.5670	.3273	-1.93 <mark>51</mark>	.8817
	Total	9	1322	.4296	.1432	4 <mark>624</mark>	.1980
LPS_B5	A (Gracillaria)	3	.0700	.0656	.0379	0929	.2329
_	B (Kappaphyd	3	.0867	.0757	.0437	1014	.2748
	C (Kombinasi	3	0667	.1155	.0667	3535	.2202
l	Total	9	.0300	.1056	.0352	0512	.1112
LPS_B6	A (Gracillaria)	3	0600	.1997	.1153	5562	.4362
<u> </u>	B (Kappaphyo	3	.2200	.2107	.1217	3034	.7434
	C (Kombinasi)	3	.1100	.1015	.0586	1421	.3621
	Total	9	.0900	.1964	.0655	0610	.2410
LPS_BR	A (Gracillaria)	3	1.4100	1.3176	.7607	-1.8631	4.6831
	B (Kappaphyo	3	.1867	.0961	.0555	0520	.4254
	C (Kombinasi	3	.3100	1.8409	1.0628	-4.2630	4.8830
	Total	9	.6356	1.2743	.4248	3439	1.6151

Lampiran 2. Hasil perhitungan berat rata-rata laju pertumbuhan harian abalon Tropis selama penelitian

ANOVA

		Sum of				
		Squares	df	Mean Square	F	Sig.
LPS_B1	Between Groups	93.901	2	46.9505	.682	.541
	Within Groups	413.315	6	68.8858		
	Total	507.216	8			
LPS_B2	Between Groups	1.907	2	.9536	.405	.684
	Within Groups	14.129	6	2.3549		
	Total	16.037	8			
LPS_B3	Between Groups	.291	2	.1453	.178	.841
	Within Groups	4.906	6	.8176		
	Total	5.196	8			
LPS_B4	Between Groups	.784	2	.3921	3.399	.103
	Within Groups	.692	6	.1154		
	Total	1.476	8			
LPS_B5	Between Groups	4.247E-02	2	.0212	2.726	.144
	Within Groups	4.673E-02	6	.0078	3	
	Total	8.920E-02	8			
LPS_B6	Between Groups	.119	2	.0597	1.893	.230
	Within Groups	.189	6	.0315		
	Total	.309	8			
LPS_BRT	Between Groups	2.722	2	1.3609	.795	.494
	Within Groups	10.268	6	1.7114		
	Total	12.990	8	1		

Lampiran 3. Analisis Ragam Laju Pertumbuhan Berat Rata-Rata Abalon Tropis (*Haliotis Asinina*)

Jenis Keragaman	Derajat Bebas	Jumlah Kuadrat	Kuadrat Tengah	F Hitung
Rata-Rata	2	0,017	0,008	0,742 ^{tn}
Perlakuan	6	0,069	0,011	
Total	8	0, 085		

Keterangan : tn = Tidak Berpengaruh Nyata

Uji Anova untuk data Lebar

Lampiran 4 : Hasil pengamatan Lebar rata-rata dan laju pertumbuhan lebar spesifik harian abalon

Descriptives

	· · · · · · · · · · · · · · · · · · ·						nfidence for Mean
				Std.	Std.	Lower	Upper
		N	Mean	Deviation	Error	Bound	Bound
LPS_L1	A (Gracillaria)	3	.0967	.1674	.0967	3193	.5126
	B (Kappaphycus)	3	.7700	.5086	.2937	<mark>4935</mark>	2.0335
	C (Kombinasi)	3	2.4467	2.9693	1.7143	-4.9294	9.8227
	Total	9	1.1044	1.8369	.6123	<mark>3075</mark>	2.5164
LPS_L2	A (Gracillaria)	3	.3133	.2715	.1568	<mark>361</mark> 2	.9879
	B (Kappaphycus)	3	.0967	.1674	.0967	<mark>319</mark> 3	.5126
	C (Kombinasi)	3	.5200	1.1150	.6437	-2 <mark>.249</mark> 8	3.2898
	Total	9	.3100	.6082	.2027	<mark>157</mark> 5	.7775
LPS_L3	A (Gracillaria)	3	.0000	.0000	.0000	.0000	.0000
	B (Kappaphycus)	3	.3800	.4073	.2352	<mark>631</mark> 8	1.3918
	C (Kombinasi)	3	.3133	.3493	.2017	<mark>554</mark> 5	1.1811
	Total	9	.2311	.3207	.1069	0154	.4776
LPS_L4	A (Gracillaria)	3	.0000	.0000	.0000	.0000	.0000
	B (Kappaphycus)	3	.2133	.1976	.1141	2775	.7041
	C (Kombinasi)	3	.4433	.5437	.3139	9073	1.7940
	Total	9	.2189	.3472	.1157	0480	.4858
LPS_L5	A (Gracillaria)	3	.0000	.0000	.0000	.0000	.0000
	B (Kappaphycus)	3	.0000	.0000	.0000	.0000	.0000
	C (Kombinasi)	3	.0000	.0000	.0000	.0000	.0000
	Total	9	.0000	.0000	.0000	.0000	.0000
LPS_L6	A (Gracillaria)	3	.2800	.4850	.2800	9247	1.4847
	B (Kappaphycus)	3	.0000	.0000	.0000	.0000	.0000
	C (Kombinasi)	3	.0800	.1386	.0800	- .2642	.4242
	Total	9	.1200	.2814	.0938	0963	.3363
LPS_LRT	A (Gracillaria)	3	.1167	.0907	.0524	1087	.3421
_	B (Kappaphycus)	3	.2400	.0346	.0200	.1539	.3261
	C (Kombinasi)	3	.6333	.4302	.2484	4352	1.7019
	Total	9	.3300	.3213	.1071	.0830	.5770

Lampiran 5 : Hasil Pengamatan Lebar rata-rata dan laju pertumbuhan lebar spesifik harian abalon

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
LPS_L1	Between Groups	8.787	2	4.3935	1.448	.307
	Within Groups	18.207	6	3.0344	İ	
	Total	26.994	8			
LPS_L2	Between Groups	.269	2	.1344	.300	.751
	Within Groups	2.690	6	.4483		
	Total	2.959	8			
LPS_L3	Between Groups	.247	2	.1235	1.287	.343
	Within Groups	.576	6	.0960		
	Total	.823	8			
LPS_L4	Between Groups	.295	2	.1475	1.322	.334
	Within Groups	.669	6	.1116		
	Total	.964	8		1	
LPS_L5	Between Groups	.000	2	.0000		
	Within Groups	.000	6	.0000		
	Total	.000	8	LIA		
LPS_L6	Between Groups	.125	2	.0624	.736	.518
	Within Groups	.509	6	.0848		
	Total	.634	8			
LPS_LRT	Between Groups	.437	2	.2184	3.370	.104
	Within Groups	.389	6	.0648		
	Total	.826	8			

Lampiran 6. Analisis Ragam Laju Pertumbuhan Lebar Rata-Rata Abalon Tropis (Haliotis Asinina)

Jenis Keragaman	Derajat Bebas	Jumlah Kuadrat	Kuadrat Tengah	F Hitung
Rata-Rata	2	0,453	0,227	3,891 ^{tn}
Perlakuan	6	0,350	0,058	
Total	8	0, 803		

Keterangan : tn = Tidak Berpengaruh Nyata

Uji Anova untuk dataPanjang

Lampiran 7 : hasil pengamatan nilai rata-rata pertumbuhan panjang dan laju pertumbuhan panjang spesifik harian abalon

Descriptives

						95% Co	
				_ :		Interval	
				Std.	Std.	Lower	Upper
1.00 D4	A (Casaillasia)	N	Mean	Deviation	Error	Bound	Bound
LPS_P1	A (Gracillaria)	3	.3833	.2871	.1658	3299	1.0966
	B (Kappaphycus)	3	.0000	.0000	.0000	.0000	.0000
	C (Kombinasi)	3	.6133	.7092	.4095	-1.1 <mark>485</mark>	2.3752
	Total	9	.3322	.4673	.1558	0270	.6914
LPS_P2	A (Gracillaria)	3	.0033	.1250	.0722	3073	.3139
	B (Kappaphycus)	3	.2400	.0964	.0557	.0004	.4796
	C (Kombinasi)	3	.2733	.4734	.2733	9 <mark>027</mark>	1.4494
	Total	9	.1722	.2802	.0934	0 <mark>432</mark>	.3876
LPS_P3	A (Gracillaria)	3	.3900	.3251	.1877	4176	1.1976
	B (Kappaphycus)	3	.2833	.2491	.1438	3 <mark>354</mark>	.9020
	C (Kombinasi)	3	.1900	.0624	.0361	.0349	.3451
	Total	9	.2878	.2245	.0748	.1152	.4604
LPS_P4	A (Gracillaria)	3	.0000	.0000	.0000	.0000	.0000
	B (Kappaphycus)	3	.1433	.1250	.0722	1673	.4539
	C (Kombinasi)	3	.1033	.1002	.0578	1455	.3522
	Total	9	.0822	.1026	.0342	.0034	.1611
LPS_P5	A (Gracillaria)	3	.0000	.0000	.0000	.0000	.0000
/	B (Kappaphycus)	3	.0533	.0924	.0533	1761	.2828
	C (Kombinasi)	3	.0733	.1270	.0733	2422	.3889
	Total	9	.0422	.0851	.0284	0232	.1076
LPS P6	A (Gracillaria)	3	.1300	.1212	.0700	1712	.4312
_	B (Kappaphycus)	3	.0600	.1039	.0600	1982	.3182
	C (Kombinasi)	3	.0733	.1270	.0733	2422	.3889
	Total	9	.0878	.1070	.0357	.0055	.1700
LPS PRT	A (Gracillaria)	3	.1500	.0624	.0361	0051	.3051
	B (Kappaphycus)	3	.1333	.0231	.0133	.0760	.1907
	C (Kombinasi)	3	.2200	.1778	.1026	2216	.6616
	Total	9	.1678	.1029	.0343	.0887	.2469

Lampiran 8 : hasil pengamatan nilai rata-rata pertumbuhan panjang dan laju pertumbuhan panjang spesifik harian abalon

ANOVA

		Sum of				
		Squares	df	Mean Square	F	Sig.
LPS_P1	Between Groups	.5760	2	.2880	1.476	.301
	Within Groups	1.1709	6	.1952		
	Total	1.7470	8			
LPS_P2	Between Groups	.1300	2	.0650	.783	.499
	Within Groups	.4981	6	.0830		
	Total	.6282	8			
LPS_P3	Between Groups	.0601	2	.0300	.525	.616
	Within Groups	.3433	6	.0572		
	Total	.4034	8			
LPS_P4	Between Groups	.0328	2	.0164	1.918	.227
	Within Groups	.0513	6	.0086		
	Total	.0842	8	ITAS		
LPS_P5	Between Groups	.0086	2	.0043	.524	.617
	Within Groups	.0493	6	.0082		
	Total	.0580	8	177		
LPS_P6	Between Groups	.0083	2	.0041	.299	.752
	Within Groups	.0833	6	.0139		
	Total	.0916	8			
LPS_PRT	Between Groups	.0127	2	.0063	.528	.615
	Within Groups	.0721	6	.0120		
	Total	.0848	8	7 27		

Lampiran 9. Analisis Ragam Laju Pertumbuhan Panjang Rata-Rata Abalon Tropis (Haliotis Asinina)

Jenis Keragaman	Derajat Bebas	Jumlah Kuadrat	Kuadrat Tengah	F Hitung
Rata-Rata Perlakuan	2	1,388 11,379	0,694 1,896	0,366 ^{tn}
Total	8	12,767		

Keterangan : tn = Tidak Berpengaruh Nyata

RIWAYAT HIDUP

Raman Laidris lahir pada tanggal 1 Januari 1984 di Desa Katemba Distrik Fakfak Tengah Kabupaten Fakfak Propinsi Papua Barat. Penulis merupakan anak ke-4 dari 4 bersaudara dari pasangan Laidris dan Wa ode Siti Maimuna. Penulis memulai pendidikan pada Sekolah Dasar YPPK Danaweria dan menamatkanya pada tahun 1997. Pada tahun yang sama penulis melanjutkan studi ke Sekolah Lanjutan Tingkat Pertama

di SLTP Negeri 2 Fakfak dan tamat pada tahun 2000, kemudian melanjutkan ke SMA Negeri 2 Fakfak dan tamat tahun 2003, Pada tahun yang sama penulis melajutkan di Universitas "45" Makassar dengan memilih Fakultas Pertanian Jurusan Perikanan Program Studi Budidaya Perikanan. Selama kuliah di Universtas "45" Makassar penulis juga aktif di berbagai organisasi intra kampus maupun di organisasi ekstra kampus. Untuk menyelesaikan studi penulis melaksanakan penelitian dengan judul, Pengaruh Pemberian Berbagai Jenis Rumput Laut Terhadap Pertumbuhan Induk Abalon Tropis (HaliotisAsinina) dan dinyatakan lulus sebagai Sarjana Perikanan (S.Pi) pada tanggal 18 Mei 2011