SKRIPSI

ANALISIS KEBUTUHAN PIPA PADA JARINGAN DISTRIBUSI PDAM (RUANG) DENGAN BANTUAN PROGRAM APLIKASI EPANET

Diajukan sebagai Syarat Ujian Sarjana Di Fakultas Teknik Jurusan Sipil Universitas Bosowa

Disusun Oleh:

ANDIKA EKO DIPUTRA 45 12 041 037

PROGRAM STUDI SIPIL FAKULTAS TEKNIK UNIVERSITAS BOSOWA MAKASSAR

2019

FAKULTAS TEKNIK

Jalan Urip Sumoharjo Km. 4 Gd. 2 Lt 6 Makassar – Sulawesi Selatan 9/1251 Telp. 0411 452 901 – 452 789 ext. 116 Faks. 0411 424 568 L

DEPARTEMEN TEKNIK SIPIL PROGRAM STUDI TEKNIK

LEMBAR PENGESAHAN

Berdasarkan surat keputusan Dekan Fakultas Teknik Universitas Bosowa Makassar No. 987/FT/UNIBOS/VIII/2019 Tanggal 22 Agustus 2019 Perihal Pengangkatan panitia dan tim penguji Tugas Akhir, maka pada :

Hari / Tanggal	*	Kamis / 29 Agustus 2019
Nama	0 #	Andika Eko Diputra
No.S <mark>tam</mark> buk	ч	45 12 041 037

Telah diterima dan disahkan oleh Panitia Tugas Akhir Fakultas Teknik Universitas Bosowa Makassar setelah dipertahankan di depan tim penguji ujian sarjana strata satu (S-1) untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Teknik pada Jurusan Teknik Sipil Fakultas Teknik Universitas Bosowa Makassar.

TIM PENGUJI TUGAS AKHIR

Ketua (Ex. Officio)	*	Ir. A. Rumpang Yusuf,M.T.	Manpas
Sekretaris (Ex. Officio)	s. 	Nurhadijah Yunianti, ST. MTW	Myssinger
Anggota	×.	a. Ir. Tamrin Mallawangeng.MT	(
		b. Eka Yuniarto, ST., MT	(MJMSn

Makassar, 29 Agustus 2019

Mengetahui:

Dekan Fakultas Teknik Univ Bosowa Makassar BOSD Dr. Ridwan, S.T., M.Si. NIDN.09-101271-01

Ketua - Program Studi / Jurusan Sipil Univ. Bosowa Makassar

mulch

Nurhadijah Yunianti, ST.MT NIDN. 09 160682 01

FAKULTAS TEKNIK

Jalan Urip Sumoharjo Km. 4 Gd. 2 Lt 6 Makassar - Sulawesi Selatan 90231 Telp. 0411 452 901 - 452 789 ext. 116 Faks. 0411 424 568

PROGRAM STUDI TEKNIK

http://www.universitasbosowa.ac.id

LEMBAR PENGAJUAN UJIAN TUTUP **TUGAS AKHIR**

Judul : "Analisis Kebutuhan pipa pada jaringan distribusi PDAM (Ruang)

dengan bantuan program Aplikasi Epanet"

Disusun dan diajukan oleh :

Nama Andika Eko Diputra

No.Stambuk 45 12 041 037

Sebagai salah satu syarat untuk memperoleh gelar Sarjana pada Program Studi Teknik Sipil / Jurusan Sipil Fakultas Teknik Universitas Bosowa Makassar

Telah disetujui oleh Komisi Pembimbing :

Pembimbing I	: Ir. A.Rumpang Yusuf, M.T.	A Reensbar
Pembimbing II	: <mark>N</mark> urhadijah Yunianti, ST. MT	

Mengetahui:

Dekan Fakultas Teknik Dr. Ridwan, S.T., M.Sil NIDN.09-101271-01

Ketua Program Studi / Jurusan Sipil

(N)

. . . .)

. . . .)

MALEN

Nurhadijah Yunianti, ST.MT NIDN. 09 160682 01

KATA PENGANTAR

Puji syukur kami panjatkan kepada Tuhan Yang Maha Esa, kerena berkat rahmat dan hidayah-Nya sehingga penyusunan tugas akhir yang berjudul "Analisis Kebutuhan pipa pada jaringan distribusi PDAM (Ruang) dengan bantuan program Aplikasi Epanet" ini dapat diselesikan. Tugas akhir ini disusun untuk memenuhi salah satu persyaratan akademik guna menyelesaikan studi pada jurusan Teknik Sipil Fakultas Teknik Universitas Bosowa Makassar.

Penulis menyadari sepenuhnya bahwa tugas akhir ini dapat diselesaikan berkat bantuan dan bimbingan dari berbagai pihak, untuk itu perkenankanlah penulis mengucapkan banyak terimakasih kepada :

- Ibu Savitri Prasandi Mulyani ST.,MT. Selaku ketua Jurusan Teknik Sipil Fakultas Teknik Universitas 45 Bosowa Makassar.
- 2. Bapak Ir. Andi Rumpang Yusuf,MT, Selaku dosen Pembimbing I, yang telah banyak meluangkan waktunya untuk mengajar, membimbing dan memberikan arahan penulis dalam menyusun tugas akhir ini.
- 3. Ibu NurHadijah Yunianti,ST.,MT, Selaku dosen pembimbing II, yang telah meluangkan waktunya untuk memberikan bimbingan dan pengarahan kepada penulis.
- 4. Segenap Bapak dan Ibu dosen Jurusan Teknik Sipil Fakultas Teknik Universitas 45 Bosowa Makassar.
- 5. Segenap staff dan karyawan fakultas Teknik Universitas 45 Bosowa Makassar.

- 6. PDAM kota Palopo sebagai Instansi terkait yang telah mengizinkan penulis untuk mengambil data di proyek tersebut.
- Segenap rekan-rekan mahasiswa Jurusan Sipil Fakultas Teknik Universitas 45 Bosowa Makassar.
- 8. Secara khusus kepada Istriku tercinta yang selalu sabar mendukungku, kedua orang tua terkasih serta sanak saudara yang telah banyak memberikan bantuan dan dukungan baik moral maupun material serta dorongan dan doa.

Penulis menyadari bahwa tulisan ini tidak luput dari kekurangankekurangan. Oleh sebab itu, penulis mengharapkan kepada pembaca, agar kiranya dapat memberikan sumbangan berupa pemikiran demi kesempurnaan dan pembaharuan tugas akhir ini.

Semoga Tugas Akhir ini dapat memberikan manfaat bagi semua pihakpihak yang berkepentingan.

Makassar, ... Oktober 2019

Penulis

BAB I PENDAHULUAN

1.1. Latar Belakang.

Perkembangan Komputer yang sangat pesat tidak dapat dipungkiri turut mempengaruhi perkembangan dalam disipin ilmu ketekniksipilan. Perhitunganperhitungan yang rumit dan memakan waktu yang cukup lama, pada saat ini dapat dilakukan dengan mudah dan sangat cepat menggunakan komputer. Salah satu penggunaan program komputer (software) yang digunakan dalam bidang teknik sipil adalah program analisis jaringan pipa air minum/bersih.

Air merupakan kebutuhan yang sangat penting bagi kelangsungan hidup manusia. Tanpa air tidak aka nada kehidupan dimuka bumi. Bumi mengandung sejumlah besar air, lebih kurang 1,4 x 106 km3 yang terdiri atas samudera, laut, sungai, danau, gunung es dan sebagainya. Namun dari sekian banyak air yang terkandung dibumi hanya 3% yang berupa air tawar yang terdapat dalam sungai,danau dan air tanah. Kebutuhan air baku untuk berbagai keperluan terutama air bersih untuk rumah tangga, tempat-tempat umum, industry dan lain-lain akan terus meningkat dari waktu ke waktu sejalan dengan lajunya pembangunan diberbagai sektor dan bidang serta jumlah penduduk yang terus bertambah. Di sisi lain jumlah penyediaan dan prasarana air baku yang ada saat ini relative terbatas sehingga belum dapat memenuhi semua kebutuhan tersebut terutama pada saat musim kemarau. Penanganan akan pemenuhan kebutuhan air bersih dapat dilakukan dengan berbagai cara, disesuaikan dengan sarana dan prasarana yang ada didaerah perkotaan, sistem penyediaan air bersih dilakukan dengan sistem

perpipaan dan nonperpipaan. Sistem perpipaan dikelola oleh masyarakat baik secara individu maupun kelompok. Untuk memenuhi kebutuhan air bersih masyarakat kota Palopo, pemerintah telah membangun sistem air bersih perpipaan sejak tahun 2008 sejak berdiri sampai tahun 2015, muncul beberapa masalah seperti kapasitas produksi yang sangat terbatas, tingkat kebocoran air yang tinggi, pelanggan yang belum mendapatkan air dan calon pelanggan yang belum terjangkau oleh jaringan perpipaan. Oleh karena itu, jaringan pipa yang ada di kota Palopo yang berfungsi mendistribusikan air bersih untuk memenuhi kebutuhan masyarakatperlu untuk di evaluasi kembali tterhadap perencanaan semula sehingga dapat ditemukan penyebab dan solusi yang tepat dalam menyelesaikan masalah tersebut. Diharapkan dari penelitian ini tercipta suatu fasilitas jaringan pendistribusian air yang mampu memberi pelayanan yang baik kepada masyarakat Kota Palopo akan kebutuhan air bersih.

Sebuah jaringan pipa dianalisis untuk menentukan energy tekanan titik dan debut aliran dalam pipa. Sebagaima debit aliran keluar (kebutuhan air) bervariasi terhadap waktu, sehingga menyebabkan perubahan secara *continue* pada energy tekanan titik dan debit aliran. Jaringan pipa dianalisis terhadap kondisi terburuk dari kombinasi debit aliran keluar yang dapat menyebabkan terjadinya tekanan rendah pada beberapa titik. Analisis jaringan pipa juga digunakan untuk memperkirakan ulang hasil pengukuran terhadap suatu jaringan. Selain itu, dapat juga digunakan untuk mengidentifikasi pipa akibat perbaikan juga dapat diamati melalui analisis jaringan. Dengan demikian Analisis jaringan pipa merupakan hal sistem penyediaan air. Adapaun pembahasan yang akan dibahas pada Tugas Akhir ini mengenai "Analisis Kebutuhan pipa pada jaringan distribusi PDAM (Ruang) dengan bantuan program Aplikasi Epanet"

1.2. Maksud dan Tujuan

Adapun maksud dan tujuan dari penulisan Tugas Akhir ini adalah untuk menganalisis jaringan pipa dengan bantuan program Epanet terhadap kebutuhan air penduduk.

1.3. Batasan Masalah.

Materi yang akan dibahas dalam tugas Akhir ini adalah "Analisis Kebutuhan pipa pada jaringan distribusi PDAM (Ruang) dengan bantuan program Aplikasi Epanet" dengan pembatasan masalah pada :

- a. Kehilangan energy yang diperhitungkan hanya kehilangan enrgi primer, sedangkan kehilangan energy sekunder diabaikan.
- b. Kebutuhan air bersih per tiap tahun.
- c. Tinggi tekan minimum di tiap titik ditentukan sebesar 10 m.
- d. Hasil perhitungan Epanet dibandingkan dalam perhitungan secara manual.

1.4. Sistematika Penulisan.

Dalam pembahasan "Analisis Kebutuhan pipa pada jaringan distribusi PDAM (Ruang) dengan bantuan program Aplikasi Epanet", AKAN DIBAGI MENJADI EMPAT (4) antara lain : **BAB I**, Merupakan pedahuluan yang berisikan tentang latar belakanh masalah, maksud dan tujuan penulisan, ruang lingkup pembahasan dan sistematika penulisan.

BAB II, Merupakan Tinjauan pustaka yang berisikan landasan teori tentang karakteristik pipa, hokum kontinuitas dan kehilangan energy pada jaringan pipa serta sedikit uraian tentang pengoprasian program Epanet.

BAB III, Merupakan Gambaran umum dan metodologi pelaksanaan.

BAB IV, Merupakan Analisis dan data yang diperoleh dari studi kasus.

BAB V, Merupakan kesimpulan dan saran penulis berdasarkan hasil yang diperoleh pada analisis jaringan pipa dengan bantuan program Epanet berdasarkan contoh kasus yang dipakai.

BAB II

TINJAUAN PUSTAKA

2.1. Teori Dasar

Pipa adalah istilah benda silinder yang berlubang dan digunakan untuk memindahkan zat hasil pemprosesan seperti cairan, gas, uap, zat padat yang dicairkan maupun sebuk halus.

Jenis pipa yang umum dikerjakan pada pekerjaan pipa, baik didalam bangunan maupun diluar bangunan yaitu sebagai berikut :

1) Pipa Galvanis.

Pipa Galvanis merupakan pipa yang sering digunakan untuk mengalirkan air bersih, pipa yang digunakan pada instansi pipa pada pompa sumasang/ helai pipa ialah pipa galvanis.

2) Pipa PVC (PolyVinyl Clorida).

Pipa PVC dalam pekerjaan ini digunakan untuk instalasi air bersih maupun air kotor.

3) Pipa HDPE (*High Density Polyethlene*).

Pipa HDPE adalah pipa plastic bertekanan yang banyak digunakan untuk pipa air dan pipa gas. Disebut pipa plastic karena material HDPE berasal dari polymer minyak bumi.

2.2. Karakteristik Pipa

2.2.1. Pipa hubungan Seri

Apabila suatu saluran pipa terdiri dari pipa-pipa dengan ukuran yang berbeda, pipa tersebut adalah dalam hubungan seri. Gambar 2.1. Menunjukkan suatu sistem tiga pipa dengan karakteristik berbeda yang dihubungkan secara seri. Panjang, diameter, dan koefisien gesekan masingmasing pipa adalah L1,L2,L3; D1,D2,D3; dan F1,F2,F3.

Apabila beda tinggi muka air kedua kolam diketahui, akan dicari besar debit aliran Q dengan menggunakan persamaan kontinuitas dan energy (Bernoulli). Langkah pertama yang harus dilakukan adalah menggambarkan garis tenaga. Seperti terlihat pada gambar 2.1. garis tenaga akan menurun kearah aliran. Kehilangan tenaga pada masingmasing pipa adalah hf1, hf2, dan hf3 dianggap bahwa kehilangan tenaga sekunder cukup kecil sehingga diabaikan.

Q=Q1=Q2=Q3

Gambar 2.1. : sistem tiga pipa dengan karakteristik berbeda

Dengan menggunakan persamaan Bernoulli untuk titik 1 dan 2 (pada garis aliran) adalah :

Kadang-kadang penyelesaian pipa seri dilakukan dengan suatu pipa ekivalen yang mempunyai penampang seragam. Pipa disebut ekivalen apabila kehilangan tekanan pada pengaliran didalam pipa ekivalen sama dengan pipa-pipa yang diganti. Sejumlah pipa dengan bermacam-macam nilai f,l dan D akan dijadikan menjadi satu pipa yang terpanjang (atau yang telah ditentukan) dan kemudian ditentukan panjang pipa ekivalen . kehilangan tenaga dalam pipa ekivalen.

$$H = \frac{8\dot{Q}^{2}}{g\pi^{2}} \left(\frac{f_{e}L_{e}}{D_{e}^{5}} \right)$$
(7.13)
$$L_{e} = \frac{D_{e}^{5}}{f_{e}} \left(\frac{f_{1}L_{1}}{D_{1}^{5}} + \frac{f_{2}L_{2}}{D_{2}^{5}} + \frac{f_{3}L_{3}}{D_{3}^{5}} \right)$$
(7.14)

2.2.2. Pipa hubungan Paralel

Pada keadaan dimana aliran melalui dua atau lebih pipa dihubungkan secara paralel seperti dalam gambar 2.2. maka persamaan kontiunitas adalah :

Persamaan tersebut dapat ditulis dalam bentuk :

Q=
$$\frac{1}{4}\frac{1}{4}\pi$$
 (D1²V1+D2²V2+D3²V3)

Persamaan energy :

$$H=hf1=hf2=hf3$$

Gambar 2.2. : Pipa hubungan Paralel

panjang pipa ekivalen ditentukan dengan cara yang sama seperti pada hubungan seri. Dari persamaan tersebut didapat :

$$Q = \frac{\pi}{4}\sqrt{2g} \left(\frac{D_e^{5}}{f_e L_e}\right)^{1/2} H^{1/2}$$

dengan cara seperti diatas :

$$Q_{1} = \frac{\pi}{4} \sqrt{2g} \left(\frac{D_{1}^{5}}{f_{1}L_{1}} \right)^{1/2} H^{1/2}$$

$$Q_{2} = \frac{\pi}{4} \sqrt{2g} \left(\frac{D_{2}^{5}}{f_{2}L_{2}} \right)^{1/2} H^{1/2}$$

$$Q_{3} = \frac{\pi}{4} \sqrt{2g} \left(\frac{D_{3}^{5}}{f_{3}L_{3}} \right)^{1/2} H^{1/2}$$

Substitusi persamaan tersebut ke dalam persamaan (7.15) maka akan didapat :

$$\left[\frac{D_{e}^{5}}{f_{e}L_{e}}\right]^{1/2} = \left[\frac{D_{1}^{5}}{f_{1}L_{1}}\right]^{1/2} + \left[\frac{D_{2}^{5}}{f_{2}L_{2}}\right]^{1/2} + \left[\frac{D_{3}^{5}}{f_{3}L_{3}}\right]^{1/2}$$
(7.19)

2.2.3. Pipa bercabang.

Sering suatu pipa menghubungkan tiga atau lebih kolam. Gambar 2.3. menunjukkan suatu sistem pompa bercabang yang menghubungkan tiga buah kolam. Akan dicari debit aliran melalui tiap-tiap pipa yang menghubungkan tiga kolam tersebut apabila panjang, diameter, macam pipa (kekasaran k), diberikan dan rapat massa serta kekentalan zat cair diketahui. Garis tekanan akan berada pada muka air di tiap-tiap kolom kolam, dan akan bertemu pada satu titikdiatas titik cabang T. debit aliran melalui tiap pipa ditentukan oleh kemiringan garis tekanan masing-masing. Arah aliran sama dengan arah kemiringan (penurunan) garis tenaga.

Gambar 2.3. : pipa menghubungkan tiga kolom

Persamaan kontinuitas pada titik cabang, yaitu aliran menuju titik cabang T harus sama dengan yang meninggalkan T. Pada gambar tersebut terlihat bahwa aliran akan keluar dari kolam A dan masuk ke kolam C. aliran keluar atau masuk ke dalam kolam B tergantung pada sifat pipa 1 dan 2 serta elevasi muka air kolam A, B, dan C. Persamaan kontinuitas adalah salah satu dari kedua bentuk berikut :

Q1 = Q2 + Q3

Atau

Q1 + Q2 = Q3

Yang tergantung apakah elevasi muka air kolam B. Persamaan (7.20) berlaku apabila elevasi garis tekanan di T lebih tinggi dari elevasi muka air kolam B, dan apabila sebaliknya berlaku persamaan (7.21). prosedur adalah sebagai berikut :

- 1) Anggap garis tekanan di titik T mempunyai elevasi Ht
- 2) Hitung Q1,Q2, dan Q3 untuk keadaan tersebut.
- Jika persamaan kontinuitas dipenuhi, makasa nilai Q1,Q2, dan Q3 adalah benar.
- Jika aliran menuju T tidak sama dengan aliran meninggalkan T, dibuat anggapan baru elevasi garis tekanan di T, yaitu dengan menaikkang garis tekanan di T apabila aliran masuk lebih kecil dari aliran keluar.
- 5) Ulangi prosedur tersebut sampai dipenuhinya persamaan kontinuitas.

Pada keadaan yang seperti ditunjukkan pada gambar 2.3. dengan menganggap bahwa elevasi muka air kolam C sebagai bidang referensi dan dianggap bahwa elevasi garis tekanan di T dibawah elevasi muka air kolam B (hT, zB) maka persamaan aliran mempunyai hubungan sebagai berikut ini yaitu persamaan energy :

$$z_{A} - h_{T} = h_{R} = f_{1} \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2g}$$

$$z_{B} - h_{T} = h_{R} = f_{2} \frac{L_{2}}{D_{1}} \frac{V_{2}^{2}}{2g}$$
(7.22)
(7.23)

$$h_{\tau} = h_{0} = f_{1} \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2g}$$
(7.24)

Persamaan kontinuitas :

$$Q1 + Q2 = Q3$$

Dari persamaan diatas, jika zA, zB, dan sifat-sifat pipa diketahui maka hT, Q1, Q2 dan Q3 dapat dihitung.

2.3. Jaringan Pipa.

Pemakaian jaringan pipa dalam bidang teknik sipil terdapat pada sistem jaringan distribusi air minum. Oleh karena itu harus dibuat perencanaan yang teliti untuk mendapatkan sistem distribusi yang efisien. Jumlah atau debit air yang disediakan tergantung pada jumlah penduduk dan macam industry yang dilayani. Analisis jaringan pipa ini cukup rumit dan memerlukan perhitungan yang besar, oleh karena itu pemakaian computer untuk analisis ini akan mengurangi kesulitan. Untuk jaringan kecil, pemakaian kalkulator untuk hitungan masih dilakukan metode untuk menyelesaikan perhitungan sistem jaringan pipa, adalah metode *Hardy Cross*.

Gambar 2.4. : Contoh suatu sistem jaringan pipa

Aliran keluar dari sistem biasanya dianggap terjadi pada titik-titik simpul. Metode Hardy cross ini dilakukan secara iterative. Pada awal hitungan ditetapkan debit aliran melalui masing-masing pipa secara sembarang. Kemudian dihitung debit aliran di semua pipa berdasarkan nilai awal tersebut. Prosedur hitungan diulangi lagi sampai persamaan kontinuitas disetiap titik simpul dipenuhi. Pada jaringan pipa harus dipenuhi persamaan kontinuitas dan tenaga yaitu :

1) Aliran dalam pipa harus memenuhi hukum-hukum gesekan pipa untuk aliran dalam pipa tunggal.

$$h_f = \frac{8 f L}{g \pi^2 D^3} Q^2$$

2) Aliran masuk ke dalam tiap-tiap simpul harus sama dengan aliran yang keluar.

$$\Sigma Q i = 0$$

 Jumlah aljabar dari kehilangan tenaga dalam satu jaringan tertutup harus sama dengan nol.

$$\Sigma hf = 0$$

2.4. Hukum Kontinuitas

Hukum kontinuitas adalah "jumlah fluida yang mengalir melalui sebuah pipa pada penampang dengan kecepatan sama dengan jumlah fluida yang keluar pada penampang dengan kecepatan dalam selang waktu yang sama".

Gambar 2.5. : Alkran Fluida stasioner

Aliran fluida dalam tabung gambar 2.5. menggambarkan aliran fluida secara stasioner, sehingga tiap partikel fluida dalam tabung yang melewati titik A akan menempuh lintasan dari partikel-partikel yang mendahuluinya yang juga melewati titik A tersebut. Lintasan itu dinamakan garis alir atau garis arus.

Misalhnya pada gambar diatas terdapat tiga gembaran garis alir dan arus. Jika luas penampang lintang tabung tidak sama, kecepatan partikel fluida itu juga berubah sepanjang garis arusnya. Akan tetapi pada satu titik tertentu dalam tabung, kecepatan setiap partikel fluida itu senantiasa sama.

Partikel yang pada suatu saat ada di A kemudian pada saat berikutnya ada di B, bergerak dengan arah dan kecepatan yang lainlagi. Fluida yang mengalir melalui kolom dengan luas penampang A1 dalam pembuluh sepanjang L1, sampai ke kolom dengan luas penampang A2 berkecepatan V2 dalam pembuluh sepanjnag L2 maka berlaku persamaan kontinuitas. " cepat alir (debit aliran) pada setiap detik (kedudukan) dalam suatu pembuluh dari fluida yang mengalir adalah konstan".

Cepat aliran atau debit aliran adalah banyaknya fluida yang mengalir per satuan waktu. Untuk memahami hal tersebut, perhatikan gambar dibawah ini!.

Gambar 2.6. : Aliran Fluida melalui pembuluh.

Gambar diatas melukiskan suatu fluida yang mengalir melalui suatu pembuluh yang luas penampangnya sama yaitu sebesar A, dengan kecepatan sebesar v. jika pada suatu saat fluida berada pada penampang K dan setelah t detik kemudian berada dipenampang L, maka dalam waktu t tersebut banyaknya fluida yang telah mengalir adalah v.t.A, sehingga persamaan kontinuitas dapat dinyatakan secara matematis; v.A= Konstan atau :

V1 . A1 = V2.A2

V = Kecepatan aliran (m/s)

A = Luas penampang (m2)

Jika pembulunya berupa silinder, sehingga penampangnya berbentuk lingkaran, maka : $A = \pi r^2$ sehingga persamaan kontinuitas dapat pula dinyatakan dengan $V_{1.}r_{1}^{2} = V_{1.}r_{1}^{2}$

dari definisi tersebut maka persamaan debit aliran dapat juga dinyatakan dengan :

$$\mathbf{Q} = \mathbf{V}/\mathbf{t}$$

keterangan :

V = Volum (m3)

T = waktu (sekon)

Q = debit aliran (m3/s)

2.5. Kehilangan Energi pada Pipa

Setiap pipa dari sistem jaringan terdapat hubungan antara kehilangan terdapat hubungan dan debit. Secara umum hubungan tersebut dinyatakan dalam bentuk :

hf = k Qm

dengan m tergantung pada rumus gesekan pipa yang digunakan, dan koefisien k tergantung pada rumus gesekan pipa dan karakteristik pipa. Sebenarnya nilai pangkat m tidak selalu konstan, kecuali bila pengairan berada pada keadaan hidraulis kasar, yang sedapat mungkin dihindari. Akan tetapi karena perbedaan kecepatan pada masing-masing pipa tidak besar, maka biasanya nilai m dianggap konstan untuk semua pipa.

2.5.1. Persamaan Darcy – Weisbach

Persamaan darcy-weisbach adalah persamaan fenomenologika yang berkaitan dengan *head loss* atau kehilangan tekanan akibat gesekan sepanjang pipa terhadap kecepatan aliran rata-rata. Persamaan ini terbentuk atas konstribusi henry darcy dan Julius Weisbach. Persamaan darcyweisbach mengandung factor gesekan tak berdimensi, yang dinamaifaktor gesekan Dercy, factor gesekan darcy-weisbach, atau factor gesekan Moody. Faktor gesekan Darcy besarnya empat kali factor gesekan fanning, dan tidak boleh disamakan. Head loss dapat dihitung dengan :

$$h_f - f \cdot \frac{L}{D} \cdot \frac{V^2}{2q}$$

Dengan :

hf = head loss akibat gesekan

L = panjang pipa

D = Diameter hidrolik dari pipa (untuk pipa yang berbentuk melingkar, diameter hidrolik sebanding dengan diameter pipa tersebut).

V = kecepatan rata-rata dari aliran, sebanding dengan debit aliran dibagi dengan perimeter basah.

g = percepatan gravitasi

f = Koefisien tak berdimensi yang disebut factor gesekan Darcy

2.5.2. Persamaan Hazen-William

Persamaan hazen-william adalah yang paling umum dipakai, persmaan ini lebih cocok untuk menghitung kehilangan tekanan untuk pipa dengan diameter besar yaitu diatas 100 mm. selain itu rumus ini sering dipakai kerena mudah dipakai. Persamaan Hazen William secara empiris menyatakan bahwa debit yang mengalir didalam pipa adalah sebanding dengan diameter pipa dan kemiringan disrolis (S) yang dinyatakan sebagai Kehilangan tekanan (ht) dibagi dengan panjang pipa (L) atau S = $\frac{ht}{L}$ disamping itu ada factor C yang menggambarkan kondisi fisik dari pipa seperti kehalusan dinding dalam pipa yang menggambarkan jenis pipa dan umur. Secara umum rumus Hazen William adalah sebagai berikut :

Q = 0.2785. C.d^{2.63}. S^{0.54}

Dimana : S = $\frac{ht}{L}$

L = adalah panjang pipa dari node 1 ke node 2

Apabila kehilangan tekanan atau yang akan dihitung maka :

$$h_l = \left(\frac{Q}{0.2785. \text{ C. } d^{2.63}. S^{0.54}}\right)^{1.85}. L$$

C adalah (Koefisien Hazen William) berbeda untuk berbagai jenis pipa sedangkan untuk jenis pipa High Density Poly Ethylene (HDPE) nilai C (Koefisien Hazen William) adalah 130.

2.5.3. Rumus Manning

Rumus Manning yang banyak digunakan pada pengaliran disaluran terbuka, juga berlaku untuk pengaliran di pipa. Rumus tersebut mempunyai bentuk :

$$V = \frac{1}{n} R^{\frac{2}{3}} I^{\frac{1}{2}}$$

Dengan n adalah koefisien Manning dan R adalah jari-jari Hydraulik, yaitu perbandingan antara luas tampang aliran A dan keliling basah P.

$$R = \frac{A}{P}$$

Intuk pipa lingkaran,
$$A = \pi D^{2/4} \operatorname{dan} P = \pi D$$
, sehingga

$$R = \frac{\pi D^2/4}{\pi D} = \frac{D}{4}$$

Atau

D = 4R

Untuk aliran di dalam pipa persamaan menjadi :

0,397 D2/3 11/2

2.6. Pengoperasian Program Epanet.

2.6.1. Menginstall Epanet.

Epanet versi 2 didesain untuk lingkungan sitem operasi *windows* 95/98/NT yang kompatibel dengan PC IBM/Intel. Terdiri dari stu file, **en2setup.exe**, yang mengandung program setup *self-extraction*. Untuk menginstall EPANET :

- 1) Pilih RUN dari Windows Start menu
- Masukkan full path dan nama file en2setup.exe atau klik tombol browse untuk menempatkan pada computer anda.

3) Klik tombol OK untuk memulai proses.

Setup folder akan menyanyakan pilihan folder (direktori) dimana file EPANET akan diletakkan. Folder default adalah c:\ program files\EPANET2. Setelah file terinstall, pada start menu akan terdapat menu baru EPANET 2.0 untuk mengeluarkan EPANET secara mudah, pilih itemnya tidak aktif pada Start menu, kemudian pilih EPANET 2.0 dari submenu yang muncul. (Nama file eksekusi dari EPANET dibawah windows adalah **epanet2w.exe**).

Begitu juga bila anda ingin membuang EPANET dari computer anda, dapat mengikuti procedure berikut :

- 1) Pilih Setting dari Start Menu
- 2) Pilih Control Panel dari setting menu
- 3) Klik ganda pada add/remove program item
- 4) Pilih EPANET 2.0 dari daftar program yang muncul.
- 5) Klik tombol Add/Remove.

2.6.2. Contoh Jaringan.

Pada Tutorial ini, akan di analisa distribusi yang mudah dan dapat dilihat pada Gambar dibawah ini :

Gambar 2.7. : Example Pipe Network.

Tabel 2.1. Example Network Node Properties.

Node	Elevation (ft)	Demand (gpm)
1	700	0
2	700	0
3	710	150
4	700	150
5	650	200
6	700	150
7	700	0
8	830	0

Tabel 2.2. Example Network Pipe Properties

Pipe	Length (ft)	Diameter (inches)	C-Factor
1	3000	14	100
2	5000	12	100

3	5000	8	100
4	5000	8	100
5	5000	8	100
6	7000	10	100
7	5000	6	100
,	7000		100
8	/000	6	100

2.6.3. Pengaturan proyek

Pemerintah pertama adalah membuat pryek baru di EPANET dan memastikan pilihan pada opsi default. Untuk memulainya, jalankan EPANET atau jika telah berjalan pilih **File>>New** (dari menu bar) untuk menciptakan proyek baru. Kemudian pilih **Project>>Default** untuk membuka form dialog yang terlihat pada gambar **2.8** kita akan menggunakan dialog itu agar EPANET secara otomatis memberi label pada objek barunya secara berurutan dimulai dari 1 sebanyak yang ditambahkan pada jaringan. Pada halaman dialog ID label, hapus semua awalan ID dan atur pertambahan ID dengan I, Kemudian pilih halam Hidraulics dan atur pilihan dari *Flow Unit* menjadi GPM (Gallon per minute). Sebagai implikasi pilihan-pilihan unit US tersebut, akan digunakan untuk seluruh kuantitas (panjang dalam *feet*, diameter pipa dalam *inches*, tekanan dalam psi, dll) juga pilih Hazen-William (H-W) sebagai formula *headloss*. Jika anda intin menyimpan pilihan tadi untuk proyek selanjutnya, anda harus menandai kotak *save* pada dasar *form* sebelum menerima itu semua dengklik tombol OK.

Object	ID Prefix
Junctions	
Reservoirs	
Tanks	
Pipes	
Pumps	CITAC
Valves	
Patterns	AL 100 25 150 500
Curves	
ID Increment	1

Gambar 2.8. : Dialog Project Default

Selanjutnya kita akan memilih beberapa pilihan penampilan yang akan ditambahkan pada peta, akan ditampilkan label ID dan symbol. Pilih **View>>Option** untuk menyampaikan dialog Map Option. Pilih halaman Notation pada form tersebut, dan check pilihan yang terlihat dalam **gambar 2.9.** dibawah. Kemudian pindah ke halaman symbol dan pilih semua kotak. Klik tombol OK untuk menerima pilihan dan tutup dialog. Akhirnya sebelum menggambar jaringan, kita harus yakin bahwa pengaturan skala bisa diterima. Pilihan **view>>Dimensioan** untuk menampilkan dialog Map Dimension. Dimensi standard digunakan untuk proyek baru. Setting tersebut akan mencukupi untuk contoh ini, kemudian tekan tombol OK.

Nodes	Display Node ID's
Links	Display Node Values
Labels	Display Link ID's
Notation	Display Link Values
Symbols	Use Transparent Text
Flow Arrows	At room of 100 th
Background	

Gambar 2.9. : Dialog Map Option

2.6.4. Menggambar Jaringan.

Kita sekarang mulai menggambar jaringan dengan menggunakan mouse dan tombol yang terkandung pada Map toolbar yang diperlihatkan dibawah. (Jika toolbar tidak muncul pilihlah **View>>toolbar>>Map**).

Mula-mula kita akan menambah reservoir. Klik tombol Resevoir kemudian klik mouse pada peta dimana akan diletakkan reservoir (dimanapun pada peta). Selanjutnya kita akan menambah junction node. Klik tombol Junction at an kemudian klik pada peta pada lokasi dari node 2 hingga 7. Akhirnya tambahkan tangki dengan mengklik tombol tangki an klik peta dimanapun akan diletakkan tangki. Pada saat ini pada peta harus Nampak sesuatu seperti pada **gambar 2.10**.

Gambar 2.10. : Peta Jaringan setelah ditambah node

Selanjutnya kita akan menambah pipa. Cobalah mulai dengan pipa 1 yang menghubungkan node 2 dan node 3. Mula-mula klik tombol pipa pada toolbar. Kemudian klik mouse pada node 2 pada peta dan pada node 3. Ulangi prosedur tersebut untuk pipa 2 hingga 7. Pipa 8 merupakan kurva. Untuk menggambarnya, mula-mula klik mouse pada node 5. Kemudian gerakkan mouse menuju node 6 klik pada titik dimana aka nada perubahan arah yang dibutuhkan untuk menjaga bentuk yang diharapkan. Akhiri proses tersebut dengan mengklik node 6.

Akhirnya kita akan menambah pompa. Klik tombol pompa \square , klik pada node 1 dan kemudian node 2. Selanjutnya kita akan memberi label pada reservoir, pompa dan tangki . pilih tombol teks \square pada Map *Toolbar* dan klik dimanapun dekat dengan reservoir (node1). Sebuah kotak edit akan muncul. Tulis kata-kata *SOURCE* dan tekan **Enter**. Klik juga pada pompa dan isilah labelnya, dan lakukan hal yang sama untuk tangki.

Kemudian klik tombol pilihan na pada Toolbar untuk mengambil peta ke dalam mode *Object Selection* diluar *mode Test Insertion*.

Pada titik ini kita telah melengkapi contoh menggambar jaringan. Jaringan pipa yang terbentuk seharusnya seperti terlihat pada **gambar 2.11** jika node berada diluar posisi, dapat dipindahkan dengan mengklik node tersebut, dan geser dengan menahan tombol kiri *mouse* menuju posisi yang baru. Pipa yang terhubung dengan node tersebut akan mengikuti nodenya. Label dapat diposisikan juga untuk mengatur kembali kurva pipa 8 :

 Mula-mula klik pada pipa 8 untuk memilihnya dan kemudian klik tombol pada Map Toolbar untuk menyimpan peta ke dalam mode *Vertex selection*.

26

- Pilih *point vertex* pada pipa dengan mengkliknya dan geser ke posisi yang baru dengan tombol kanan *mouse* tertahan.
- 3) Jika diperlukan, *vertice* dapat ditambahkan atau dihapus dari pipa dengan mengklik kanan mouse dan pilih pilihan *appropriate* dari *popup* menu yang muncul.
 - 4) Ketika selesai, klik untuk kembali ke mode *Object Selection*.
- 2.6.5. Mengatur objek properties.

Sebagai objek yang ditambahkan kedalam proyek, telah ditetapkan pengaturannya secara standard. Untuk mengubah nilai menjadi lebih spesifik, objek harus dipilih menuju Property Editor (**gambar 2.11**). banyak beberapa cara berbeda untuk melakukan hal itu. Jika editor telah Nampak sebelumnya kita dapat dengan mudah mengklik objek atau memilihnya dari halaman data dari browser. Jika editor belum Nampak maka anda dapat membuatnya nampak dengan mengikuti langkah sebagai berikut :

- 1) Double klik objek pada peta
- Klik kanan pada objek dan pilih Properties dan pop-up menu yang muncul.
- 3) Pilih objek dari halaman data pada jendela Browser dan kemudian

klik tombol Edit *mada* browser.

Junction 2 Value Property ***Junction ID** 2 X-Coordinate 528.46 Y-Coordinate 7276.42 Description Tag *Elevation 700 Base Demand n Demand Pattern Demand Categories 1 Emitter Coeff. Initial Quality Source Quality

Sewaktu-waktu Property Editor dapat di fokus dapat menekan F1 untuk memperoleh gambaran penuh tentang properties terdapat dalam daftar.

Gambar 2.11. : Editor Property

Marilah kita mulai mengedit dengan memilih node 2 ke dalam Property Editor yang ditampilkan diatas. Kita sekarang memasukkan elevasi dan demand untuk node ini pada *field* yang tepat. Anda dapat menggunakan panah *Up* dan *Down* pada keyboard atau *mouse* untuk berpindah diantara fields. Kita hanya membutuhkan klik pada Property editor. (kita juga bisa menekan page *Down* atau *Page Up* untuk bergerak ke objek setelahnya atau sebelumnya pada tipe yang sama pada database). Kemudian kita dapat dengan mudah bergerak dari satu onjek dan mengisi elevasi dan demand untuk *nodes*, dan panjang, diameter, dan kekasaran (factor-C) untuk link.

Untuk reservoir, masukkan elevasi (700) pada *field* (total Head). Untuk tangki, masukkan 830 untuk elevasinya, 4 untuk level saat itu, 20 untuk level maksimum, dan 60 untuk diameter. Untuk pompa, kita membutuhkan penetapan kurva pompa (hubungan *head vs flow*). Masukkan label ID 1 pada *field pump Curve*.

Selanjutnya kita akan membuat pump curve 1. Dari halaman

Browse, pilih *curve* dari daftar pada kotak dan klik tombol *Add* kurva 1 baru akan ditambahkan pada *database* dan *corve* Editor akan muncul (Lihat Gambar 2.12). masukkan aliran pompa *design* (600) dan *head* (150) kedalam *form*. EPANET secara otomatis akan membuat kurva pompa secara lengkap dari *single* poin. Persamaan kurva akan Nampak bentuknya. Klik OK untuk menutup Editor.

Gambar 2.12. : Editor Kurva

2.6.6. Menyimpan dan membuka proyek

Adalah gagasan yang baik untuk menyimpan hasil design yang lengkap pada file :

- 1) Dari menu File pilih pilihan Save As
- pada dialog save As yang muncul, pilih folder dan nama file yang akan dijadikan nama proyek. Disarankan diberi nama tutorial.net (ekstension.net akan ditambahkan jika file tidak diberi nama).
- 3) Klik **OK** untuk men-save proyek kepada file.

Data proyek di save ke file dalam format biner. Jika anda ingin meng-save dalam file text yang bisa dibaca,gunakan perintah **File>>Export>>Network.** Untuk membuka proyek pada waktu yang lain, kita harus menggunakan perintah **Open** dari menu file.

2.6.7. Menjalankan Analisis Periode Tunggal.

Saat ini memiliki informasi yang cukup untuk menjalankan analisa dalam periode tunggal dari contoh jaringan tadi. Untuk menjalankan analisa tersebut pilih **Project>>Run** Analiysis atau klik tombol Run pada standard Toolbar. (jika toolbar tidak Nampak pilih **view>>Toolbar>>Standard** dari menu bar).

Jika proses run tidak berhasil, maka akan muncul jendela report yang mengindikasikan problem apa yang terjadi. Jika prosesnya berhasil, anda dapat melihat hasil perhitungannya dalam berbagai cara. Cobalah salah satu cara berikut :

- Pilih node pressure dari halaman Browser's map dan perhatikan bagaimana nilai pressure pada node dapat ditandai dengan warna. Untuk melihat legenda untuk perkodean warna, pilih view>>Legends>>Node (atau klik kanan pada bagian kosong pada peta dan pilih node Legend dari menu popup). Untuk mengubah interval dan warna legenda, klik kanan pada legenda untuk memunculkan Legend Editor.
- Aktifkan Property Editor (double klik pada node dan link) dan lihat bagaimana hasil perhitungan ditampilkan pada akhir dari daftar property.

31
3) Membuat daftar tabular dari hasil perhitungan dengan memilih

Report>>Table (atau mengklik tombol table **mengklik tombol table** pada standard Toolbar) Gambar 2.13. menampilkan table untuk hasil link setelah di run. Terlihat tanda negative pada aliran menandakan bahwa alirannya memiliki arah yang berlawanan dengan yang digambar sebelumnya.

🙀 Network Table - Links						
Link ID	Flow GPM	Velocity fps	Headloss ft/Kft	Status		
Pipe 1	617.42	1.29	0.80	Open		
Pipe 2	382.51	1.09	0.69	Open		
Pipe 3	159.91	1.02	1.00	Open		
Pipe 4	29.34	0.19	0.04	Open		
Pipe 5	-90.09	0.57	0.34	Open		
Pipe 6	292.42	1.19	1.03	Open		
Pipe 7	55.58	0.63	0.57	Open		
Pipe 8	-44.42	0.50	0.38	Open		

Gambar 2.13. : Contoh Tabel hasil Run pada link

2.6.8. Menjalankan Analisis pada periode yang panjang

Untuk membuat jaringan kita menjadi lebih realistis, analis dapat diperpanjang periodenya, kita harus membuat time pattern yang menggunakan demand yang bervariasi pada demand pada node dalam satu hari. Untuk contoh yang sederhana kita akan menggunakan pola waktu dalam 6 jam, kemudian membuat perubahan demand dalam empat perbedaan dalam satu hari. (pola 1 jam adalah angka tipikal dan penetapan *standard* untuk proyek yang baru). Kita mengatur pola waktu dengan memilih **Option-Times** dari data Browser, mengklik tombol **Edit** pada browser untuk memunculkan property Editor (jika sebelumnya belum Nampak), dan memasukkan 6 sebagai nilai dari *Patternd Time Step* (seperti yang terlihat pada **gambar 2.14** dibawah). Ketika *Time Option* tersedia kita dapat mengatur durasi waktu sesuai keinginan kita berapa lama proses *run* akan dijalankan. Gunakan periode 3 hari (masukkan 72 jam pada *Duration Property*).

Times Options		
Property	Hrs:Min	
Total Duration	72	4
Hydraulic Time Step	1:00	
Quality Time Step	0:05	
Pattern Time Step	6	
Pattern Starfanhez 2.8	lines option	-1

Gambar 2.14. : Time Option

Untuk membuat pattern, pilih kategori Pattern pada Browser dan

klik tombol add sebuah pattern 1 akan tercipta dan dialog pattern Editor seharusnya muncul untuk periode waktu 1 sampai 4 dari durasi waktu 24 jam. Factor-faktor tersebut digunakan untuk memodifikasi demand dari nilai dasarnya pada setiap periode. Selama kita me-run selama 72 jam, pola akan berulang setiap interval 24 jam.

Gambar 2.15. : Pattern Editor

Sekarang kita harus menetapkan pattern 1 ini kepada seluruh junction pada jaringan. Kita dapat menggunakan *Hidraulic* Optionnya EPANET untuk menghindari mengedit setiap junction. Jika anda menemukan *Hidraulic Option* pada *Property Editor*, anda akan melihat disana ada item yang disebut *default pattern*. Atur hingga nilainya menjadi 1, yang mengakibatkan setiap junction akan menggunakan *pattern*, selama tidak ada pattern lain yang ditetapkan pada junction. Selanjutnya run alaysis (pilih **Project>>Run Analysisi** atau klik tombol 😰 pada toolbar standard). Untuk memperpanjang periode analisa terdapat beberapa cara melakukannya :

- Scrollbar pada kendali browser time digunakan untuk menampilkan peta jaringan pada poin yang berbeda. Cobalah lakukan dengan pilihan *pressure* sebagai parameter node dan *flow* pada parameter *link*.
- Model tombol VCR pada Browser dapat menganimasi peta berdasarkan waktu. Klik tombol Forward untuk memulai animasi dan tekan tombol stop untuk mengentukannya.
- 3) Tambahkan panah arah aliran pada setiap map (pilih view>>Option, pilih halaman *Flow Arrows* dari dialog Map mulailah menganimasi lagi dan amati perubahan arah aliran yang melalui pipa yang terhubungkan pada tangki yang mengisi dan kosong sepanjang waktu.
- Membuat plot time series untuk node dan link. Sebagai contoh, untuk melihat bagaimana elevasi air pada tangki berubah menurut waktu.
 - a. Klik pada tangki
 - b. Pilih Report>>Graph (atau klik tombol Grafik pada standard Toolbar) yang akan menampilkan kotak dialog Graph Selection.
 - c. Pilih tombol *Time Serries* pada dialog
 - d. Pilih Head sebagai parameter untuk di plot
 - e. Klik OK untuk menerima pilihan tersebut.

Perhatikan kebiasaan secara periodic dari elevasi air dalam tangki sepanjang waktu (Gambar 2.16).

Gambar 2.16. : Contoh dari Time Series Plot

2.6.9. Menjalankan Analisa Kualitas Air.

Selanjutnya kita akan menampilkan bagaimna untuk menambah analisa dari contoh yang ada termasuk kualitas air. Untuk kasus sederhana kita akan melacak perkembangan dapam usia air dalam jaringan setiap waktu. Untuk membuat analisis tersebut kita harus memilih usia untuk parameter yang ditetapkan dalam *Quality Options* (Pilih *Option-Quality* dari halaman Data dari Browser, kemudian klik tombol **edit** pada browser untuk memunculkan *Property Editor*). Jalankan analisis dan pilih usia dari parameter untuk diperlihatkan dalam peta. Buatlah urutan waktu plot untuk usia pada tangki. Perhatikan, tidak seperti level air, 72 jam tidaklah cukup bagi tangki untuk mencapai periodik kebiasaan dari usia air. (Kondisi standar untuk semua node adalah dimulai dengan usia 0). Cobalah mengulang simulasi menggunakan durasi 240 jam atau pastikan usia saat awal pada 60 jam pada tangki. (masukkan 60 sebagai nilai Initial Quality pada Property Editor pada tangki).

Akhirnya kita dapat melihat simulasi perjalanan dan peluruhan dari chlorine memulai jaringan. Ikutilah langkah-langkah perubahan pada database :

- 1. Pilih **Option-Quality** untuk diedit dari Data Browser. Pada field Parameter Property Editor ketiklah Chlorine.
- Pindah ke Option-Reactions pada Browser. Untuk Global Bulk
 Coefficent masukkan nilai -1.0. Angka ini merefleksikan laju khlorin yang akan meluruh pada saat reaksi pada aliran bulk sepanjang waktu.
 Laju tersebut akan diaplikasikan pada seluruh pipa pada jaringan.
 Anda dapat mengedit nilai ini untuk pipa tunggal jika dibutuhkan.
- 3. Klik pada node Resorvoir dan atur Initial Quality pada 1.0. Ini adalah konsentrasi dari khlorin yang secara kontinue masuk ke dalam jaringan. (Atur kembali initial quality pada Tank ini menjadi 0 jika akan mengubahnya).

Sekarang, jalankan contoh. Gunakan kontrol waktu pada Map Browser untuk melihat bagaimana level chlorine berubah berdasarkan lokasi dan waktu selama simulasi. Perhatikan untuk jaringan yang sederhana, hanya junction 5,6, dan 7 yang menekan level khlorine sebab di tanki di dibubuhkan chlorine dengan dosis rendah. Buat laporan reaksi setelah di run dengan memilih **Report>>Reaction** dari menu utama. Laporan tersebut seharusnya akan terlihat seperti **gambar 2.11.** Di sana memperlihatkan secara rata-rata bagaimana kehilangan khlorine muncul pada pipa yang berlawanan dari tangki. Istilah "bulk" mengacu kepada reaksi yang muncul pada bulk fluid, dan "wall" mengacu kepada reaksi dengan material pada dinding pipa. Reaksi selanjutnya adalah nol sebab kita tidak secara spesifik terdapat koefisien dinding pada contoh ini.

Gambar 2.11 Contoh Laporan Reaksi

Kita hanya menyentuh berbagai kapabilitas dari EPANET pada permukaannya. Beberapa feature tambahan dari program harus dicoba dengan :

- Mengedit property untuk group dari objek pada area yang didiami oleh pengguna.
- Gunakan pernyataan kondali untuk operasional pompa dari hari atau level tangki air.
- Mengeksplore Map Option yang lainnya, seperti membuat ukuran node yang berhubungan dengan nilai (value)nya.
- 4) Lampirkan Peta latar belakang (seperti peta jalan) kepada peta jaringan.
- 5) Membuat type grafik yang berbeda, seperti plot profil dan kontur.
- Menambahkan data kalibrasi kepada proyek dan menampilkan laporan kalibrasi.
- 7) Menyalin peta, grafik, atau laporan ke clipboard atau file.
- Menyimpan dan mendata skenario design (misal kebutuhan saat ini dari node, nilai kekerasan pipa, dll).

BAB III

METODE PENELITIAN

3.1 Objek Penelitian

Kota Palopo adalah sebuah kota di Provinsi Sulawesi Selatan, Indonesia. Kota Palopo sebelumnya berstatus kota administratif sejak 1986 dan merupakan bagian dari Kabupaten Luwu yang kemudian berubah menjadi kota pada thun 2002 sesuai dengan Undang-Undang Nomor 11 Tahun 2002 tanggal 10 April 2002.

Pada awal berdirinya sebagai kota otonom, Palopo terdiri atas 4 kecamatan dan 20 kelurahan. Kemudian, pada tanggal 28 April 2005, berdasarkan Peraturan Daerah Kota Palopo Nomor 03 Tahun 2005, dilaksanakan pemekaran menjadi 9 kecamatan dan 48 kelurahan.

Kota ini memiliki luas wilayah 247,52 km² dan pada akhir 2015 berpenduduk sebanyak 168.894 jiwa.

3.2 Tahap Persiapan

Tahap persiapan merupakan rangkaian kegiatan sebelum memulai pengumpulan data dan pengolahannya. Dalam tahap awal ini disusun hal-hal penting yang harus dilakukan dengan tujuan supaya kegiatan terstruktur, terkoordinasi dan mendapatkan hasil seperti yang direncanakan. Adapun tahapan tersebut antara laing :

Studi pustaka mengenai masalah yang berhubungan dengan jaringan distribusi air bersih.

- 2. Menentukan kebutuhan data.
- 3. Pengadaan persyaratan administrasi.
- 4. Mendata instansi yang akan dijadikan narasumber.
- 5. Survey ke lokasi untuk mendapatkan gambaran umum kondisi di lapangan.

3.3 Pengumpulan Data

Dalam proses perencanaan, diperlukan analisis yang teliti. Semakin rumit permasalahan yang dihadapi maka makin kompleks pula analisis yang akan dilakukan. Untuk dapat melakukan analisis yang baik, diperlukan data/informasi, teori konsep dasar dan alat bantu yang memadai, sehingga kebutuhan akan data sangat mutlak diperlukan. Data yang dijadikan bahan acuan dalam pelaksanaan dan dapat diklasifikasikan dalam dua jenis data, yaitu :

3.3.1. Data Primer

Data primer adalah data yang diperoleh dari lokasi rencana pembangunan atau hasil perhitungan maupun hasil survei yang dapat langsung dipergunakan sebagai sumber dalam perancangan bangunan.

Data-data primer yang digunakan adalah sebagai berikut :

• Debit air bersih berdasarkan pendekatan estimasi penggunaan teoritis

3.3.2. Data Sekunder

Data sekunder merupakan data pendukung yang dipakai dalam proses pembuatan dan penyusunan Laporan Tugas Akhir ini. Data sekunder ini didapat dari instansi yang terkait baik dari sekitar lokasi kegiatan maupun ditempat lain yang menunjang dengan kegiatan tersebut.

Data-data sekunder yang digunakan adalah sebagai berikut :

- Jenis-jenis dan diameter pipa, jenis pipa yang digunakan di wilayah Kota Palopo hanya pipa jenis HDPE saja dan memiliki 3 macam diameter yaitu 63 mm, 90 mm, dan 160 mm dengan kekasaran atau koefisien yang sama yaitu 130.
- 2) Skema jaringan, berbentuk CAD yang terlampir.
- Pemakaian air setiap sambungan rumah (SR), berbentuk excel yang terlampir.

3.4 Tahap Penelitian

3.4.1. Analisis Skema Jaringan

Mendigitasi ulang peta yang berbentuk CAD lalu di masukkan ke program Epanet dengan berbentuk metafile yang sebelumnya telah di eksport di program AutoCAD, lalu memasukkan data jaringan seperti panjang pipa, diameter pipa, koefisien pipa dari data yang telah diperoleh dari instansi terkait, dan tidak lupa memasukkan elevasi yang didapat dari *Google Earth*.

3.4.2. Analisis Debit Air

Memasukkan debit pada *junction* atau *node* yang melewati Sambungan Rumah yang diperoleh dari data pemakaian air, tetapi tidak semua *juction* atau *node* yang dipakai untuk memasukkan data debit, karena yang dimasukkan data debit hanya yang melewati Sambungan Rumah (SR) saja yang tidak melewati hanya diisi elevasi saja yang didapat dari *Google Earth*. Sebelumnya data pemakaian air setiap SR harus dikonversikan dulu ke LPS (*Liter per Second*).

3.4.3. Analisis Tekanan Air

Rumus yang digunakan dalam penelitian ini adalah rumus Hazen William karena jaringan yang panjang dan memiliki diameter yang besar (>50mm).

Gambar 3.1 Diagram Alir

BAB IV

4.1. Skematik Rencana Daerah Pelayanan

Lokasi rencana pemasangan pipa Pdam Kota Palopo berada di 4 (empat) kecamatan yaitu :

- a. Kecamatan Wara Timur
- b. Kecamatan Wara
- c. Kecamatan Wara Utara
- d. Kecamatan Munggkajang

Pdam Kota Palopo berada di Kecamatan Mungkajang

4.2. Proyeksi Jumlah Penduduk

Proyeksi secara umum merupakan prediksi atau estimasi terhadap keadaan di masa depan. Hal ini merupakan ramalan terhadap perubahan permintaan, perkembangan teknologi ataupun perkembangan dunia bisnis yang dapat mempengaruhi perencanaan suatu produksi.

Proyeksi jumlah penduduk diperhitungkan berdasarkan tiga macam metode perhitungan statistik yaitu :

- a. Metode Least Square
- b. Metode Arithmatik
- c. Metode Geometrik

Dalam rancangan ini dipilih metode Least Square dengan pertimbangan hasil perhitungan metode ini menghasilkan standar deviasi terkecil.

Data statistik tahun 2009 s/d 2015 yaitu :

JUMLAH PENDUDUK KOTA PALOPO TAHUN 2008 S/D 2015

Tabel IV-1

No.	kecamatan	Tahun							
N		2008	2009	2010	2011	2012	2013	2014	2015
	5	1		7	2				
1	Wara Timur	27.564	30.746	30.997	31.308	31.998	34.186	35.458	36.319
2	Wara	29.065	30.747	30.983	31.335	32.026	34.347	35.687	36.549
3	Wara Utara	17.767	18.844	19.006	19.203	19.628	20.618	21.101	21.609
4	Mungkajang	7.237	6.924	7.052	7.052	7.205	7.375	7.396	7.575

Sumber Data : Badan Statistik Kota Palopo

- A. Proyeksi Jumlah Penduduk per Kecamatan
 - 1) Kecamatan Wara Timur

Jumlah Penduduk Kec. Wara Timur Kota Palopo

METODE LEAST SQUARE

TAHUN	TAHUN	JML. PENDDK	XY	X ²
	KE (X)	(Y)	1.7	
2008	1	27.564	27.564	1
2009	2	30.746	61.492	4
2010	3	30.997	92.991	9
2011	4	31.308	125.232	16
2012	5	31.998	159.990	25
2013	6	34.186	205.116	36
2014	7	35.458	248.206	49
2015	8	36.319	290.552	64
JUMLAH	36	258.678	1.211.143	204

$$a = \frac{\sum Y \cdot \sum X^2 - \sum X \sum XY}{n \cdot \sum X^2 - (\sum X)^2}$$

$$a = 27.227,3$$

$$b = \frac{n \cdot \sum X \cdot Y - \sum X \cdot \sum Y}{n \cdot \sum X^2 - (\sum X)^2}$$

$$b = 1.132,2$$

$$Y = a + bX$$

$$Y = 27.227,3 + 1.132,17 X$$

STANDART DEVIASI DARI HASIL PERHITUNGAN LEAST SQUARE

TABEL IV – 3

TAHIN	TAHUN	JML.	HASH DEDTH		
IAHON	KE	PENDDK	HASILTERIH	Yi – Y	(Yi – Y
	(X)	(Y)	LEAST	mean	mean) ²
			SQUARE		
		-	(Yi)		
2008	1	27.564	28.359	(3.963)	15.702.067
<mark>20</mark> 09	2	30.746	29.492	(2.830)	8.011.259
2010	3	30.997	30.624	(1.698)	2.884.053
2011	4	31.308	31.756	(566)	320.450
2012	5	31.998	32.888	<u>566</u>	320.450
2013	6	34.186	34.020	1.698	2.884.053
2014	7	35.458	35.152	2.830	8.011.259
2015	8	36.319	36.285	3.963	15.702.067
JUMI	LAH	258.576	258.576		53.835.657

Y mean = 32.322

$$s = \sqrt{\frac{\sum (Y_i - \bar{Y})^2}{n-1}}, untuk ... n > 20$$
$$s = \sqrt{\frac{\sum (Y_i - \bar{Y})^2}{n}}, untuk ... n \le 20$$

Standart Deviasi Least Square 2.594

$$\frac{s=\sqrt{\sum(Yi-4ac)}}{2a}$$

√dyyu

PROYEKSI JUMLAH PENDUDUKAN KECAMATAN WARA TIMUR KOTA PALOPO

TAHUN 2016-2030 BERDASARKAN METODE LEAST SQUARE

Tahun	TAHUN KE	Jlh Penddk	Pertumbuhan	Presentase
Tunun	(X)	(jiwa)	(jiwa)	(%)
2016	9	37.417	1.132	2,26
<mark>2</mark> 017	10	38.549	1.132	3,03
2018	11	39.681	1.132	2,94
2019	12	40.813	1.132	2,85
2020	13	41.945	1.132	2,77
2021	14	43.078	1.132	2,70
2022	15	44.210	1.132	2,63
2023	16	45.342	1.132	2,56
2024	17	46.474	1.132	2,50
2025	18	47.606	1.132	2,44
2026	19	48.738	1.132	2,38
2027	20	49.871	1.132	2,32
2028	21	51.003	1.132	2,27
2029	22	52.135	1.132	2,22
2030	23	53.267	1.132	2,17
ita-rata Per	tumbuhan		1.132	2,54

2) Kecamatan Wara

Tabel Jumlah Penduduk Kec. Wara Kota Palopo

METODE LEAST SQUARE

Tabel IV-5

TAHUN	TAHUN KE (X)	JML. PENDDK (Y)	XY	X ²
2008	1	29.065	27.564	1
2009	2	30.747	61.492	4
2010	3	30.983	92.991	9
2011	4	31.335	125.232	16
2012	5	32.026	159.990	25
2013	6	34.347	205.116	36
2014	7	35687	248.206	49
2015	8	36.549	290.552	64
JUMLAH	36	258.678	1.211.143	204

- a = 27.885,0
- b = <u>1.046,1</u>
- y = 27.885,0 + 1.046,08

STANDART DEVIASI DARI HASIL PERHITUNGAN LEAST SQUARE

Tabel IV	-6
----------	----

TAILIN	TAHUN	JML.	HACH DEDTH		
IANUN	KE	PENDDK	HASIL FERIH	Yi – Y	(Yi – Y
	(X)	(Y)	LEAST	mean	mean) ²
			SQUARE		
		1	(Yi)		
2008	1	29.065	28.931	(3.661)	13.405.057
2009	2	30.747	29.977	(2.615)	6.839.315
2010	3	30.983	31.023	(1.569)	2.462.153
2011	4	31.335	32.069	(523)	273.573
2012	5	32.026	33.115	523	273.573
2013	6	34.347	34.162	1.569	2.462.153
2014	7	35.687	35.208	2.615	6.839.315
2015	8	36.549	36.254	3.661	13.405.057
					/
JUM	LAH	260.739	260.739		45.960.194

Y mean = 32.592

Standart Deviasi Least Square 2.397

PROYEKSI JUMLAH PENDUDUK KECAMATAN WARA KOTA PALOPO

TAHUN 2016-2030 BERDASARKAN METODE LEAST SQUARE

Tabel IV-7

TAHUN	TAHUN KE	JML. PENDDK	Pertumbuhan	Presentase
	KE (X)	(Jiwa)	(Jiwa)	(%)
2016	9	37.300	1.046	2.17
2017	10	38.346	1.046	2,80
2018	11	39.392	1.046	2,73
2019	12	40.438	1.046	2,66
2020	13	41.484	1.046	2,59
2021	14	42.530	1.046	2,52
2022	15	43.576	1.046	2,46
2023	16	44.622	1.046	2,40
2024	17	45.668	1.046	2,34
2025	18	46.715	1.046	2,29
2026	19	47.761	1.046	2,24
2027	20	48.807	1.046	2,19
2028	21	49.853	1.046	2,14
2029	22	50.899	1.046	2,10
2030	23	51.945	1.046	2,06
JUMLAH	36	258.678		

3) Kecamatan Utara

Tabel jumlah Penduduk Kec. Wara Utara Kota Palopo

Tabel IV – 8

		INT		
TAHUN	TAHUN	PENDDK	XY	X ²
	KE(X)	(Y)		
2008	1	17.767	17.767	1
2009	2	18.844	37.688	4
2010	3	19.006	57.018	9
2011	4	19.203	76.812	16
2012	5	19.698	98.140	25
2013	6	20.618	123.708	36
2014	n. i 171. j f	21.101	147.707	49
2015	8	21.609	172.872	64
JUMLAH	36	157.776	731.712	204

a = 17.394,9

b = 517,1

Y= 17.394,9 + 517,14 X

STANDART DEVIASI DARI HASIL PERHITUNGAN LEAST SQUARE

T 1 1	TTTT	0
I anei	1 1/	_ Y
ranci	1 1	

	TAHUN	JML.	Atras.	Yi – Y	(Yi – Y
TAHUN	KE	PENDDK	HASIL PERTH.	mean	mean)2
	(X)	(Y)	LEASTSQUARE		
			(Yi)		
2008	1	17.767	17.912	(1.810)	3.276.100
2009	2	18.844	18.429	(1.293)	1.671.480
2010	3	19.006	18.946	(776)	601.703
2011	4	19.203	19.463	(259)	66.859
2012	5	19.698	19.981	259	66.859
2013	6	20.618	20.498	776	601.733
2014	7	21.101	21.015	1.293	1.671.480

2015	8	21.609	21.532	1.810	3.276.100				
JUMLAH		157.776	157.776		11.232.343				
Y mean = 19.722									

Standart Deviasi Least Square 1.185

PROYEKSI JUMLAH PENDUDUK KECAMATAN WARA UTARA KOTA PALOPO TAHUN 2016-2030 BERDASARKAN METODE LEAST SQUARE.

	TAHUN KE	JML. PENDDK	PERTUMBUHAN	PRESENTASE
TAHUN	(X)	(jiwa)	(jiwa)	(%)
2016	9	22.049	517	1,87
2017	10	22.566	517	2,35
2018	11	23.083	517	2,29
2019	12	23.601	517	2,24
<mark>2</mark> 020	13	24.114	517	2,19
2021	14	24.635	517	2,14
2022	15	25.152	517	2,10
2023	16	25.669	517	2,06
2024	17	26.186	517	2,01
2025	18	26.703	517	1,97
2026	19	27.221	517	1,94
2027	20	27.738	517	<mark>1,90</mark>
<mark>2</mark> 028	21	28.255	517	<mark>1,8</mark> 6
2029	22	28.772	517	1,83
2030	23	29.298	517	1,80
Rata-rata pertumbuhan			517	2,04

4) Kecamatan Mungkajang.

Tabel Jumlah penduduk Kec. Mungkajang Kota Palopo.

Tabel IV – 8 JML. PENDDK X^2 TAHUN TAHUN XY KE(X)(Y) 7.237 2008 7.237 1 1 2 13.848 2009 6.924 4 9 2010 3 6.081 18.243 2011 4 7.052 28.208 16 2012 5 7.205 36.025 25 7.375 44.250 2013 6 36 2014 7 7.396 51.772 49 7.575 2015 60.600 8 64 JUMLAH 36 56.845 260.183 204

METODE LEAST SQUARE

5) Jumlah Proyeksi Pertumbuhan Penduduk Tahun 2016 s/d 2030

Berdasarkan metode Least Square diperkirakan jumlah penduduk di Kecamatan Wara Timur, Kecamatan Wara, Kecamatan Wara Utara dan Kecamatan Mungkajang sebagai berikut :

PROYEKSI PERTUMBUHAN PENDUDUK KOTA PALOPO.

TAHUN 2016 s/d 2030

No.	TAHUN	KECAMATAN	

		Woro		Woro	Mungkai	JUMLAH
		vv al a	Wara	vv al a	миндкај	PDDK
		Timur		Utara	ang	ΠWΔ
						JIWA
1	2016	37.416,75	37.299,75	22.049,14	7.574,96	104.340,61
2	2017	38.548,92	38.345,83	22.566,29	7.679,26	107.140,30
3	2018	39.681,08	39.391,92	23.083,43	7.783,56	109.939,99
4	2019	40.813,25	40.438,00	23.600,57	7.887,86	112.739,68
5	2020	41.945,42	41.484,08	24.117,71	7.992,15	115.539,37
6	2021	43.077,58	42.530,17	24.634,86	8.096,45	118.339,06
7	2022	44.209,75	43.576,25	25.152,00	8.200,75	121.138,75
8	2023	45.341,92	44.622,33	25.669,14	8.305,05	123.938,44
9	2024	4 <mark>6.474,0</mark> 8	45.668,42	26.186,29	8.409,35	126.738,13
10	2025	47.606,25	46.714,50	26.703,43	8.513,64	129.537,82
11	2026	48.738,42	47.760,58	27.220,57	8.617,94	132.337,51
12	2027	49.870,58	48.806,67	27.737,71	8.722,24	135.137,20
13	2028	51.002,75	49.852,75	28.254,86	8.826,54	137.936,89
14	2029	52.134,92	50.898,83	28.772,00	8.930,83	140.736,58
15	2030	53.267,08	51.944,92	29.289,14	9.035,13	143.535,27

5. Proyeksi Kebutuhan Air Pdam Kota Palopo

Proyeksi kebutuhan air ditentukan berdasarkan faktor-faktor sebagai berikut :

1. Jumlah penduduk yang dilayani

- 2. Pemakaian air per kapita per orang
- 3. Kebutuhan domestik dan non domestic
- 4. Kebocoran air/kehilangan air baik pada sistem produksi maupun distribusi.
- 5. Kebutuhan yang belum terpenuhi secara penuh (unsatified demand)
- 6. Peningkatan laju pemakaian air sejalan dengan peningkatan taraf hidup masyarakat
- 7. Peningkatan mutu pelayanan

Kebutuhan hari maksimum.

Klasifikasi dan struktur kebutuhan air

Tabel IV -13.

0.	Parameter	Kota metro >1.000.0000 (Jiwa)	Kota Besar 500.000-1.000.000 (Jiwa)	Kota Sedang 100.000-500.000 (Jiwa)	Kota Kecil < 100.000 (Jiwa)		
	Tingkat Pelayanan (target)	100°%	100%	100%	100%6		
	Tingkat pemakaian air (liter/orang/hari) Sambungan Rumah(SR) Kran Umum (KU)	190 30	170 30	150 30	130 30		
	KebutuhanNon domestik -Industri (l'd'ha) Berat Sedang Ringan -Komersial(l/d'ha) Pasar Hotel - Sosial & Institusi: Universitas(l'Alhs/hari) Sekolah (l'aiswa/hari) Mesjä (u'aiswa/hari) Romah Sakit(l/kmr/hr) Romah Sakit(l/kmr/hr) Puskesunas(mi/hr/unit) Kamtor(l/dt/hr) Militer (mi/hr/ha)	$\begin{array}{c} 0,50\text{-}1,000\\ 0,25\text{-}0,50\\ 0,1-1,0\\ \hline \\ 400\\ 1000\\ \hline \\ 20\\ 15\\ 1-2\\ 400\\ 1-2\\ 400\\ 1-2\\ 0,01\\ 10\\ \hline \end{array}$	30 30 0,50-1,000 0,25-0,50 0,1 - 1,0 400 400 1060 20 15 1 - 2 400 100 10		ruhan Dourestik		
4	Jumlah Jiwa/SR Jumlah Jiwa/HU SR : HU	5 100 50 : 50 s/d 80 : 20	5 100 50 : 50 s/d 80 : 20	5 100 80 : 20	6 100 - 200 70 : 30		
4	Kebutuhan hari rata-rata	Kebutakan Domes	tik + New Demestik +	kehilangen Air	AND REAL PROPERTY AND		
5	Kebutuhan hari maksimum	Kebutuhan rata-rat	a x 1,15- 1,20 (faktor ha	n maksimum)	見ていいの言語		
6	Kehilangau air Sistem baru Sistem lama	20% x Kebutuhan 30%-50% x Kebutu	20% x Kebutuhan rata-rata 30%-50% x Kebutuhan rata-rata				
-	the second se	T1 . 1	Eductulo and a seta x falter inn nuncal: 1 5 - 2				

Jumlah kebutuhan air untuk Kota Palopo adalah 150 L/org/hr (kategori kota sedang) Asumsi bahwa 1 Keluarga terdiri dari 5 jiwa sehingga jumlah jiwa per keluarga (KK) adalah 5 orang (jiwa)

Rumus Kebutuhan Air (Q) setiap keluarga (KK) adalah :

Q = Kebutuhan air per orang (150 L/org/hr) x jumlah jiwa setiap keluarga 5 (org)

= 750 L/hr

= 0,00868 L/dt \rightarrow untuk input demand di dalam Junction/node

Kebutuhan hari maksimum = Kebutuhan rata-rata x 1,2 (factor air maksimum)

Qip = 0,00868 L/dt x 1,2

 $= 0,01042 \rightarrow$ untuk design diameter pipa distribusi

1) Kebutuhan Air di Kecamatan Wara Timur tahub 2016 s/d 2030

Tabel IV – 14

No.	Tahun	Jumlah KK	Jumlah Jiwa	Q keb		Qip
		~	2	L/hr	L/dt	L/dt
1	2016	7.483	37.417	5.612.513	65	78
2	2017	7.710	38.549	5.782.338	67	80
3	2018	7.936	39.681	5.952.163	69	83

4	2019	8.163	40.813	6.121.988	71	85
5	2020	8.389	41.945	6.291.813	73	87
6	2021	8.616	43.078	6.461.638	75	90
7	2022	8.842	44.210	6.631.463	77	92
8	2023	9.068	45.342	6.801.288	79	94
9	2024	9.295	46.474	6.971.113	81	97
10	2025	9.521	47.606	7.140.938	83	99
11	2026	9.748	48.738	7.310.763	85	102
12	2027	9.974	49.871	7.480.588	87	104
13	2028	10.201	51.003	7.650.413	89	106
14	2029	10.427	52.135	7.820.238	91	109
15	2030	10.653	53.267	7.990.063	92	111

Kebutuhan Air di Kecamatan Wara tahun 2016 s/d 2030

		Jumlah	Jumlah			
				Q keb		Qip
No.	Tahun	KK	Jiwa			
					1 - /-	
				L/hr	L/dt	L/dt
1	2016	7.400	27.200	5 504 062	(5	79
1	2016	7.400	57.300	5.594.905	00	/8
2	2017	7 669	38 346	5 751 875	67	80
-	2017	1.005	50.510	5.751.675	07	
3	2018	7.878	39.392	5.908.788	68	82
4	2019	8.088	40.438	6.065.700	70	84
	U 1 1 1					
5	2020	8.297	41.484	6.222.613	72	86
6	2021	9.506	42.520	6 270 525	74	80
0	2021	8.300	42.550	0.379.323	/4	89
7	2022	8 715	13 576	6 536 /38	76	91
ŕ	2022	0.715	+3.570	0.550.450	10	71
8	2023	8.924	44.622	6.693.350	77	93
9	2024	9.134	45.668	6.850 <mark>.26</mark> 3	79	95
10	2025	9.343	46.715	7.007.175	81	97
11	2026	0.550	17761	7 1 6 4 0 9 9	02	100
11	2026	9.552	47.761	7.164.088	83	100
12	2027	9 761	48 807	7 321 000	85	102
12	2027	5.701	+0.007	7.321.000	05	102
13	2028	9.971	49.853	7.477.913	87	104
					1	
14	2029	10.180	50.899	7.634.825	88	106
15	2030	10.389	51.945	7.791.738	90	108

2) Kebutuhan Air di Kecamatan Wara Utara tahun 2016 s/d 2030

		Jumlah	Jumlah			
				Q keb		Qip
No.	Tahun	KK	Jiwa			
				T /1	T / 1/	T / I/
				L/nr	L/dt	L/dt
1	2016	4.410	22.049	3.307.371	38	46
2	2017	4.513	22.566	3.384.943	39	47
3	2018	4.617	23.083	3.462.514	40	48
4	2019	4.720	23.601	3.540.086	41	49
5	2020	4.824	24.118	3.617.657	42	50
6	2021	4.927	24.635	3.695.229	43	51
7	2022	5.030	25.152	3.772.800	44	52
8	2023	5.134	25.669	3.850.371	45	53
9	2024	5.237	26.186	3.927.943	45	55
10	2025	5.341	26.703	4.005.514	46	56
11	2026	5.444	27.221	4.083.086	47	57
12	2027	5.548	27.738	4.160.657	48	58
13	2028	5.651	28.255	4.238.229	49	59
14	2029	5.754	28.772	4.315.800	50	60
15	2030	5.858	29.289	4.393.371	51	61

3) Kebutuhan Air di Kecamatan Mungkajang tahun 2016 s/d 2030

		Jumlah	Jumlah			
No	Tahun	KK	Liwa	Q ke	b	Qip
110.	1 anun	KK	JIwa			
				L/hr	L/dt	L/dt
1	2016	1.515	7.575	1.136.245	13	16
2	2017	1.536	7.679	1.151.889	13	16
3	2018	1.557	7.784	1.167.534	14	16
4	2019	1.578	7.888	1.183.179	14	16
5	2020	1.598	7.992	1.198.823	14	17
6	2021	1.619	8.096	1.2 <mark>1</mark> 4.4 <mark>6</mark> 8	14	17
7	2022	1.640	8.201	1.230.113	14	17
8	2023	1.661	8.305	1.245.757	14	17
9	2024	1.682	8.409	1.261.402	15	18
10	2025	1.703	8.514	1.277.046	15	18
11	2026	1.724	8.618	1.292.691	15	18
12	2027	1.744	8.722	1.308.336	15	18
13	2028	1.765	8.827	1.323.980	15	18
14	2029	1.786	8.931	1.339.625	16	19
15	2030	1.807	9.035	1.355.270	16	19

4) Rekapitulasi Kebutuhan Air PDAM Kota Palopo Tahun 2016 s/d 2030

PROYEKSI KEBUTUHAN AIR DI PDAM PALOPO

Tabel	IV –	18
1 auci	L L V	10

No	Та	hun	Jumlah K	Jumlah			
	-		Wara	Wara	Wara	Mungkajang	Air
			Timur		Utara		L/ft
1		2016	78	78	<mark>4</mark> 6	16	217
2		2017	80	80	47	16	223
3	/dt)	2018	83	82	48	16	229
4	R (L	2019	85	84	49	16	235
5	IAI	2020	87	86	50	17	241
6	HAN	2021	90	89	51	17	247
7	UTU	2022	92	91	52	17	252
8	EBU	2023	94	93	53	17	258
9	ΗK	2024	97	95	55	18	264
10	ILA	2025	99	97	56	18	270
11	JUN	2026	102	100	57	18	276
12	ISX	2027	104	102	58	18	282
13	YEI	2028	106	104	59	18	287
14	PRO	2029	109	106	60	19	293
15		2030	111	108	61	19	298

Berdasarkan table..... diatas diproyeksikan pemakaian air tahun 2030 adalah sebagai berikut

a.	Kecamatan Wara Timur	110 L/dt
b.	Kecamatan Wara	108 L/dt
c.	Kecamatan Wara Utara	61 L/dt
d.	Kecamatan Mungkajang	19 L/dt

4. Data Hasil Survey

Pengambilan data primer dilakukan dengan menggunakan alat bantu yaitu GPS (Globe Potition Sistem) merek Garmin. Adapun fungsi GPS adalah

- 1. Mengukur jarak antar titik
- 2. Mengetahui titik koordinat
- 3. Mengetahui elevasi setiap titik koordinat

Berdasarkan rencana pemasangan pipa di wilayah PDAM Kota Palopo Gambar... yaitu : Kecamatan Mungkajang, Kecamatan Wara, Kecamatan Timur dan Kecamatan Wara Utara diperoleh data sebagai berikut:

No	Kecamatan	Jalan	Junction/		Pipa/Panjang		keteranga
			Elevasi		(m)		n
		14	(m)				/
1	Mungkaja	Jl.	RESER	57,00	Resrvoa	21	
	ng	Pongsimpin	-VOAR	182	r-P1		
2	Mungkaja	Jl.	P1	56,41	P1 – P2	50	
	ng	Pongsimpin		_			
3	Mungkaja	J1.	P2	54,83	P2 – P3	57	
	ng	Pongsimpin					

4	Mungkaja	Jl.	P3	53,46	P3 – P4	50	
	ng	Pongsimpin					
5	Mungkaja	Jl.	P4	52,00	P4 – P5	50	
	ng	Pongsimpin					7
6	Mungkaja	Jl.	P5	51,39	P5 – P6	50	
	ng	Pongsimpin	-				
7	Mungkaja	Jl.	P6	51,00	<u>P6</u> – P7	50	
	ng	Pongsimpin			1		
8	Mungkaja	Jl.	P7	50,41	P7 – P8	50	
	ng	Pongsimpin					
9	Mungkaja	J1.	P8	50,00	P8 – P8	50	
	ng	Pongsimpin			$A \leq$		
10	Mungkaja	J1.	P9	49,18	P9 – P10	52	
	ng	Pongsimpin					
11	Mungkaja	J1.	P10	<mark>48,</mark> 13	P10 –	23	
	ng	Pongsimpin			P11		
12	Mungkaja	J1.	P11	47,80	P11 –	50	
	ng	Pongsimpin			P12		
13	Mungkaja	J1.	P12	46,88	P12 –	50	
	ng	Pongsimpin			P13		
14	Mungkaja	J1.	P13	45,90	P13 –	50	
	ng	Pongsimpin		÷	P14		
15	Mungkaja	J1.	P14	45,09	P14 –	50	
	ng	Pongsimpin	- 24	1082	P15		
16	Mungkaja	J1.	P15	44,25	P15 –	50	
	ng	Pongsimpin	~		P16		
17	Mungkaja	J1.	P16	43,27	P16 –	50	
	ng	Pongsimpin			P17		

18	Mungkaja	Jl.	P17	42,27	P17 –	50	
	ng	Pongsimpin			P18		
19	Mungkaja	Jl.	P18	41,45	P18 –	50	
	ng	Pongsimpin			P19		
20	Mungkaja	J1.	P19	40,60	P19 –	50	
	ng	Pongsimpin	-		P20		
21	Mungkaja	Jl.	P20	39,64	P20 –	50	
	ng	Pongsimpin			P21		
22	Mungkaja	Jl.	P21	38,67	P21 –	50	
	ng	Pongsimpin			P22		
23	Mungkaja	J1.	P22	37,87	P22 –	50	
	ng	Pongsimpin	1.11		P23		
24	Mungkaja	J1.	P23	36,83	P23 –	50	
	ng	Pongsimpin			P24		
25	Mungkaja	Jl.	P24	<mark>36,</mark> 00	P24 –	50	
	ng	Pongsimpin			P25		
26	Mungkaja	Jl.	P25	34,94	P25 –	50	
	ng	Pongsimpin			P26		
27	Mungkaja	J1.	P26	34,06	P26 –	50	
	ng	Pongsimpin			P27		
28	Mungkaja	J1.	P27	33,00	P27 –	50	
	ng	Pongsimpin		·	P28		
29	Mungkaja	J1.	P28	32,48	P28 –	50	
	ng	Pongsimpin	24		P29		
30	Mungkaja	Jl.	P29	32,13	P29 –	50	
	ng	Pongsimpin			P30		
31	Mungkaja	J1.	P30	31,54	P30 –	50	
	ng	Pongsimpin			P31		
	1		1	1	L	1	1
32	Mungkaja	Jl.	P31	31,26	P31 –	30	
----	----------	--------------	-----	-------	-------	-----	------------
	ng	Pongsimpin			P32		
33	Mungkaja	Jl.	P32	31,00	P32 –	50	
	ng	Pongsimpin			P33		7
34	Mungkaja	Jl.	P33	30,49	P33 –	50	
	ng	Pongsimpin	-		P34		
35	Mungkaja	J1.	P34	30,12	P34 –	50	
	ng	Pongsimpin			P35		
36	Mungkaja	J1.	P35	29,50	P35 –	50	
	ng	Pongsimpin			P36		
37	Mungkaja	J1.	P36	29,00	P36 –	50	
	ng	Pongsimpin	H 2		P37		
38	Mungkaja	J1.	P37	27,83	P37 –	50	
	ng	Pongsimpin			P38		
39	Mungkaja	Jl.	P38	27,00	P38 –	50	
	ng	Pongsimpin			P39	- 1	
40	Mungkaja	Jl.	P39	26,16	P39 –	50	
	ng	Pongsimpin			P40		
41	Mungkaja	J1.	P40	25,15	P40 –	50	
	ng	Pongsimpin			P41		
42	Mungkaja	J1.	P41	24,14	P41 –	50	
	ng	Pongsimpin			P42		
43	Mungkaja	J1.	P42	23,18	P42 –	50	
	ng	Pongsimpin	24	1557	P43		
44	Mungkaja	Jl.	P43	22,12	P43 –	13	
	ng	Pongsimpin			P44		
45	Wara	J1.	P44	22,00	P44 –	50	Koneksi
		Oputosappail			P55		ke
		e					exciting A

46	Wara	Jl.	P45	22,81	P45 –	50	
		Oputosappail			P46		
		e					
47	Wara	J1.	P46	23,23	P46 –	50	
		Oputosappail			P47		
		e	-				
48	Wara	J1.	P47	24,02	P47	50	
		Oputosappail			1		
		e					
49	Wara	Jl.	P48	24,62	P48	50	
		Oputosappail					
		е	K 2		AS		
50	Wara	J1.	P49	25,35	P49	50	
		Oputosappail					
		е				4	
51	Wara	J1.	P50	26,30	P50	50	
		Oputosappail					
		e					
52	Wara	J1.	P51	26,69	P51	50	
		Oputosappail			1.1		
		е	· · · ·		-		
53	Wara	J1.	P52	27,33	P52	46	
		Oputosappail		2.			
		е	\sim				
54	Wara	JI.	P53	28,00	P53	50	
		Oputosappail					
		e					
					1	I	1

55	Wara	Jl.	P54	26,98	P54	50	
		Oputosappail					
		e					
56	Wara	J1.	P55	25,73	P55	50	
		Oputosappail					
		e	-				
57	Wara	Jl.	P56	24,42	P56	50	
		Oputosappail			1		
		е					
58	Wara	J1.	P57	24,00	P57	50	
		Oputosappail					
		e	- FC 3		A		
59	Wara	J1.	P58	22,28	P58	50	
		Oputosappail					
		е					
60	Wara	J1.	P59	22,00	P59	50	
		Oputosappail					
		e					
61	Wara	J1.	P60	21,08	P60	50	
		Oputosappail					
		e		2			
62	Wara	J1.	P61	20,00	P61	50	
		Oputosappail	- 72	2.	\sim		
		е	\sim				
63	Wara	Jl.	P62	18,94	P62	50	
		Oputosappail	-				
		e					

64	Wara	Jl.	P63	18,00	P63	50	
		Oputosappail					
		e					
65	Wara	J1.	P64	17,00	P64	50	
		Oputosappail					
		e	-				
66	Wara	J1.	P65	15,33	P65	12	
		Oputosappail			1		
		е					
67	Wara	Jl.	P66	15,00	P66	50	
		Oputosappail					
		e			A.		
68	Wara	J1.	P67	14,88	P67	50	
		Oputosappail					
		е					
69	Wara	J1.	P68	15,05	P68	50	
		Oputosappail					
		е					
70	Wara	J1.	P69	14,94	P69	30	
		Oputosappail					
		е					
71	Wara	JI.	P70	15,00	P70	30	
		Oputosappail		12.	\sim		
		e					
72	Wara	J1.	P71	15,00	P71	50	
		Oputosappail	-				
		e					

73	Wara	Jl.	P72	15,00	P72	50	
		Oputosappail					
		e					
74	Wara	Jl.	P73	15,00	P73	50	Koneksi
		Oputosappail				-	ke
		e					exciting B
75	Wara	Jl. Samiun	P74	15,00	P74	50	
	Timur				1		
76	Wara	Jl. Samiun	P75	15,00	P75	50	
	Timur	1					
77	Wara	Jl. Samiun	P76	15,00	P76	50	
	Timur	NIVE	R 5		$A \leq$		
78	Wara	Jl. Samiun	P77	15,00	P77	50	_
	Timur						
79	Wara	Jl. Opu daeng	P78	22,20	P78	30,5	
	Timur	Risaju					
80	Wara	Jl. Opu daeng	P79	22,00	P79	50	
	Timur	Risaju					
81	Wara	Jl. Opu daeng	P80	22,10	P80	50	
	Timur	Risaju					
82	Wara	Jl. Opu daeng	P81	22,00	P81	50	
	Timur	Risaju					
83	Wara	Jl. Opu daeng	P82	23,56	P82	40	
	Timur	Risaju	1	1582			
84	Wara	Jl. Opu daeng	P83	24,68	P83	10	
	Timur	Risaju					
85	Wara	Jl. H. Hasan	P84	25,00	P84	50	
							-

96	Wara	II II Hagan	D95	25.25	D05	50	
80	wara	JI. H. Hasan	P85	25,25	P85	50	
	Timur						
87	Wara	Jl. H. Hasan	P86	25,79	P86	36	
	Timur						
88	Wara	JI H Hasan	P87	26.00	P87	52	
00	Timur	JI. II. Husun	107	20,00	107	52	
	1 111101						
89	Wara	Jl. A. Tadda	P88	24,00	P88	50	
	Timur			7.4	/		
90	Wara	Jl. A. Tadda	P89	24,20	P89	50	
	Timur						
91	Wara	Jl. A. Tadda	P90	23.16	P90	50	
	Timur	NIVE			IA C		
00			D01	00.00	D 01	50	
92	wara	JI. A. Tadda	P91	23,30	P91	50	
	Timur						
93	Wara	Jl. A. Tadda	P92	<mark>24</mark> ,67	P92	37	Koneksi
	Timur						ke
							exciting A
94	Wara	Jl. KH. Tazak	P93	24,94	P93	12	
95	Wara	Jl. KH. Tazak	P94	22,00	P94	50	
96	Wara	Jl. KH. Tazak	P95	23,61	P95	50	
97	Wara	Jl. KH. Tazak	P96	24,12	P96	50	
98	Wara	Jl. Kelapa	P97	25,94	P97	50	/
99	Wara	Jl. Kelapa	P98	26,94	P98	50	
100	Wara	Jl. Kelapa	P99	27,06	P99	50	
101	Wara	Jl. Kelapa	P100	28,00	P100	50	
102	Wara	Jl. Kelapa	P101	28,86	P101	50	
103	Wara	Jl. Kelapa	P102	26,37	P102	50	
					1		1

105	Woro	Il Kalana	D104	27.00	D104	17.2	
105	vv al a	JI. Kelapa	F 104	27,90	F 104	17,5	
						3	
106	Wara	Jl. Kelapa	P105	27,83	P105	50	
107	Wara	Jl. Kelapa	P106	27,80	P106	50	
108	Wara	Jl. Kelapa	P107	27,77	P107	50	
109	Wara	Jl. Kelapa	P108	27,74	P108	10	
110	Wara	Jl. Kelapa	P109	27,72	P109	50	
111	Wara	Jl. Kelapa	P110	27,74	P110	50	
112	Wara	Jl. Kelapa	P111	27,74	P111	50	
113	Wara	Jl. Kelapa	P112	27,43	P112	40	
114	Wara	Jl. Kelapa	P113	27,16	P113	28	
115	Wara	Jl. Kelapa	P114	27,18	P114	50	
116	Wara	Jl. Kelapa	P115	27,00	P115	50	
117	Wara	Jl. Kelapa	P 116	27,12	P116	24	
118	Wara	Jl. Kelapa	P117	27,00	P117	50	
119	Wara	Jl. Kelapa	P 118	27,17	P118	30	
120	Wara	Jl. Kelapa	P119	27,00	P119	50	
121	Wara	Jl. Kelapa	P120	26,12	P120	22,2	
					γ.	5	
122	Wara	Jl. Kelapa	P121	25,88	P121	25	
123	Wara	Jl. Anggrek	P122	25,00	P122	16,3	
		Non Blok		<u> </u>			
124	Wara	Jl. Anggrek	P123	25,15	P123	50	
		Non Blok	124				
125	Wara	Jl. Anggrek	P124	23,96	P124	50	
		Non Blok					
126	Wara	Jl. Anggrek	P125	23,26	P125	50	
		Non Blok					

127	Wara	Jl. Anggrek	P126	23,00	P126	58,9	Koneksi
		Non Blok				8	ke
							exciting C
128	Wara	Jl. A.	P127	24,56	P127	13	7
	Timur	Djemma					
129	Wara	Jl. A.	P128	25,00	P128	50	
	Timur	Djemma			-		
130	Wara	Jl. A.	P129	25,00	P129	50	
	Timur	Djemma	18				
131	Wara	Jl. A.	P130	26,00	P130	50	
	Timur	Djemma					
132	Wara	Jl. A.	P131	25,23	P131	50	
	Timur	Djemma					_
133	Wara	Jl. A.	P132	26,49	P132	50	
	Timur	Djemma					
134	Wara	Jl. A.	P133	27,00	P133	50	
	Timur	Djemma					
135	Wara	Jl. A.	P134	26,84	P134	50	
	Timur	Djemma	- A.		P		
136	Wara	Jl. A.	P135	27,00	P135	50	
	Timur	Djemma		5×	-	11	
137	Wara	Jl. A.	P136	27,13	P136	32	Koneksi
	Timur	Djemma		24	\sim		ke
			- 24	100	1		exciting A
138	Wara	Jl. Batara	P137	27,00	P137	8	
139	Wara	Jl. Batara	P138	18,00	P138	44	
140	Wara	Jl. Batara	P139	16,87	P139	50	
141	Wara	Jl. Batara	P140	16,60	P140	50	
142	Wara	Jl. Batara	P141	16,60	P141	64	

143	Wara	Jl. G Terpedo	P142	16,46	P142	65	Koneksi
							ke
							exciting A
144	Wara	Jl. G Terpedo	P143	15,98	P143	50	
145	Wara	Jl. G Terpedo	P144	15,50	P144	50	
146	Wara	Jl. G Terpedo	P145	15,03	P145	50	
147	Wara	Jl. G Terpedo	P146	15,54	P146	65	
148	Wara	Jl. G Terpedo	P147	14,06	P147	42	Koneksi
							ke
		5					exciting A
149	Wara	Jl. KH.	P148	13,89	P148	50	
	Utara	Ramli	N 2		AS		
150	Wara	Jl. KH.	P149	13,89	P149	50	
	Utara	Ramli					
151	Wara	JI. KH.	P150	<mark>13</mark> ,72	P150	50	
	Utara	Ramli				-	
152	Wara	Jl. KH.	P151	13,72	P151	42	
	Utara	Ramli					
153	Wara	Jl. KH.	P152	12,55	P152	50	
	Utara	Ramli					
154	Wara	Jl. KH.	P153	13,38	P153	32	
	Utara	Ramli		÷			
155	Wara	Jl. KH.	P154	13,56	P154	23	
	Utara	Ramli	1	100		/	
156	Wara	J1.	P155	13,21	P155	50	
	Utara	Hasanuddin					
157	Wara	J1.	P156	13,21	P156	44	Koneksi
	Utara	Hasanuddin					ke
							exciting A

158	Wara	Jl.	P157	13,21	P157	
	Utara	Hasanuddin				

- 5. Pengolahan Data Berbasis Aplikasi Pemodelan Jaringan Pipa
 - a. Persamaan Hazen William.

Persamaan hazen William adalah yang paling umum dipakai. Persamaan ini lebih cocok untuk menghitung kehilangan tekanan untuk pipa dengan diameter besar yaitu diatas 100 mm. selain itu rumus ini sering dipakai karena mudah dalam penerapannya.

Rumus Persamaan Hazen Wiliam

- Hf = kehilangan Tekanan
- L = Panjang pipa (m)
- D = Diameter pipa (m)
 - = Kecepatan aliran (m/det)
- C = Koefisien kekasaran pipa hazen Williams

Nilai kekasaran Hazen Williams

V

1) PV	VC	120 - 140
2) H	DPF	130

- 3) Pipa asbes 120
- 4) Pipa besi galvanis 110

5)	Cast Iron	110
- /		

Berdasarkan data primer (hasil survey) dan data primer (hasil perhitungan proyeksi jumlah penduduk) tersebut diatas maka selanjutnya di input ke dalam program aplikasi epanet sebagai berikut :

a. Pembuatan Junction

Selain sebagai penanda awal/akhir juga diinput beberapa variable yaitu :

- 1) Elevasi
- 2) Demand (pemakaian air)
- 3) Head (untuk reservoir)

Contoh membuat Junction berdasarkan data pada Tabel 1 no.1 dan 2 yaitu :

1) Input Reservoir

2) Input Data P1

To National Map			(
50.00 73.30 105.00		Avection PI (P)	
[**		Pupery Value Value D P1 + X-Carabate 1998 0	
	RESERVOAR P1	Y Countinute 0180.44 Description 40 Top	
		Terrotom (26.4) Ban Desard 0	
		Demond Energines 2 Resting Cost	
		insu Quilty	

b. Pembuatan Jaringan Pipa.

Selain sebagai input panjang Pipa juga diinput beberapa variable yaitu :

- 1) Diameter Pipa
- 2) Roughness (kekasaran Pipa)
- 3) Loss Coeff (alat bantu pipa)
- 4) Alat bantu pipa : Bend, TEE, dll (Koefisien)

Contoh membuat pipe berdasarkan data pada table no. 1 dan 2 yaitu :

1. Input Panjang Pipa antara Junction Reservoar ke Junction P1 :

Durinton 25.00 25.00				
1.0 · · · · · · · · · · · · · · · · · · ·	RESERVOAR 1	F1 	Pipe 1. (1) Picoto Valar Viela 10: 1 Viela 10: 1 Viel	

2. Input Panjang pipa antara Junction P1 ke Kinction P2 :

Hasil Pengimputan data hasil Survey berdasarkan rencana pemasangan

pipa adalah sebagai berikut :

Gambar 1 :

5. Proyeksi Jumlah Penduduk

PROYEKSI JUMLAH PENDUDUK KOTA PALOPO

TAHUN 2016-2030 BERDASARKAN METODE ARITMATIK

Tahun	Jumlah Penduduk (iiwa)	Pertumbuhan (ijwa)	presentase				
2016		(Jiwa)	(70)				
2016	11.216	146	1,32				
2017	11.363	146	1,30				
2018	11.509	146	1,29				
2019	11.655	146	1,27				
2020	11.801	146	1,26				
2021	11.948	146	1,24				

2022	12.094	146	1,22
2023	12.240	146	1,21
2024	12.387	146	1,20
2025	12.533	146	1,18
2026	12.679	146	1,17
2027	12.825	146	1,15
2028	12.972	146	1,14
2029	13.118	146	1,13
2030	13.264	146	1,12

6. Kebutuhan Air

			Proyekal														
	1 minutes	Sature	2016	2017	2018	2019	2020	2021	2022	2023	2024	2026	2026	2027	2028	2025	2030
Saudet Durch at at	Urwan	Java	11 216	113.3	11 509	11 655	11 901	11 945	12.094	12.240	12 357	12 5 3 3	12 672	12 825	12.972	13 118	13 264
ARTIGET PREPARA		1 1															
Parabal & more dilement	meinte	1													-	61.14	63.34
Standenson Europh	. 14	00	20,34	71,34	72,34	73,54	74,34	75,54	76,34	77,34	79.34	79,54	10,54	81,14	10,59	10.000	11.054
the second second	- Justish Jawa ye terkyana	Joura	7 890	8 106	8.326	8.548	8 713	9 001	9 2 3 3	9.467	9704	9744	10 106	10432	10 661	600	6.00
	- Asurra 1 JR metayani	Jiwa	6,00	6,00	6,00	00,8	6,90	6,00	6,00	6,00	900	0,00	0,00	1 739	1 200	1.877	1.847
	- Jumbh Samhungan Rumah	that	1315	1.351	1308	1 425	14621	1.500	1 539	1 578	101/	102/	10%	1.11	41	42	20
	Ferrentsahan Sucritungan Ramah	tinit.		36	37	37	17	38	34	39	39	40	41				
		042	10	10	10	10)	10	15	15	15	15	20	20	20	20	20	20
Bolkan Cloken	- Va	Inn	1 122	1 136	1 151	11061	1 180	1752	1.814	1 136	1 859	2.507	2 536	2.565	2.564	2.674	2.653
	- Julian J. M. Presidenti	hen	150.00	150.00	150,00	150,00	150,00	150,00	150,00	150,00	150,00	150,00	150,00	150,00	190,00	1,90,00	190,00
	- Ankin I HU awaywa	that	2	8	8	81	8	12	12	12	12	17	17	17	17	17	14
	- Jeruses Program Ostan	1 11-4		1				4				5	-				1
	· Person with Parties Officia	1 1														13.463	13.207
Dearline & horts upon		Jama	9012	9 342	9.477	9714	9.953	10.793	11 047	11 303	11 562	12.451	12 722	12 997	112/5	13 357	13.747
Trut at Pelsyunan		69	80,35	\$1,34	82,35	\$3,35	84,34	90,14	91,34	92,14	95,34	99,15	100,34	101,14	102,14	101.10	111,14
Ammini Kelutahan Ar	P2	1	100 00	105.00	155.00	155.00	255.00	155.00	155.00	155.00	155,00	195,00	155,00	155,90	195,00	155,00	155,0
Genturgen Fismalt		(B(Cegha)	155,00	100,00	20.00	20.00	10.00	10.00	30.00	10.00	30,00	30,00	30,00	30,00	30,00	36,00	30,00
- 183		(BOrgelir)	20,00	20,00	20,00	200,000		10,00									
		+															
		1 2024	1 245 200	1 220 150	1 111 550	1 348 260	1.395 215	1 440 915	1400.535	1.522 465	1.559 960	1.616 530	1.654.910	1.693.910	1 733 375	1773.335	1.792.96
Tokal K etsaukum Don	uw.sk	0/0	14.41	14,50	15,20	15,60	16,15	16,77	17,19	17,62	18,05	18,71	19,15	19,61	20,06	20,52	20,7
		-											1000	14.00	15.00	10.00	100
Total Z doub fran New	o Donnestik	40	19,60	19,00	19,00	19,00	19,00	19,00	19,00	19,00	19,00	19,00	19,00	19,00	19,00	13,00	140.54
	the sector of th	(NHe)	236.624	243.039	249.575	256 169	265 091	275 294	282.252	289 268	296 373	307 141	314 4 55	5.21 843	329.341	339774	10
		(\$/dt)	2,74	2,81	2,20	2,96	3,07	3,19	1,27	7,35	3,49	3,55	7,64	3,03	3,81	1,10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
					1 663 131	1 604 429	1 660 306	1 724 209	1762 782	1 811 733	1 66 233	1 923 671	1.969 343	2.015 753	2.042 716	2 110 249	2.133 62
Total Kebatuban Air		(1/189	1482.014	1 522 189	1.203.125	104427	19.77	12.96	20.46	20.97	21.49	22,26	22,79	23,33	23,87	24,42	24,6
		1 9.80	17,15	11,04	19,05	100.1	0.24	10,000									
Protecte to b distances		1 16	79.00	38.00	37,00	36,00	35,00	34,00	33,00	32,00	31,00	30,00	25,00	25,00	29 /00	29,00	25.9
S'eblarena ak		Landa	10.97	10.50	10.63	10,45	10,35	10,28	10,08	9,37	9,65	9.54	9,31	9,13	9,75	8,96	14.7
Lebutuban alt mta.r	rata (Or)	Linia	26,12	28,42	29,72	29,02	29,56	30,24	30,54	30,84	31,14	31,81	32,10	32,96	Ea,El	34,40	54,7
Vahershan bari Mat	takened 18-Ort	Iterite	12.34	32.68	33.02	33,37	34,00	34,77	35.12	35,46	35,81	36,58	36,92	37,79	38.67	39,56	40,0
N, PERSONAL PROPERTY ALLAN	10.1.000	Larra	34,54	0.0	43.08	43.57	44.35	45 35	45.81	46.26	46,70	47,71	48,15	49,29	50,44	51,60	52.1

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil analisis dan pembahasan di bab sebelumnya dapat diambil kesimpulan sebagai berikut :

- Pipa yang digunakan adalah pipa PVC (*polyvinyl chloride*) dengan diameter
 90, 140 dan 160 mm. Dengan pipa primer/induk yang berdiameter 90 mm,
 dan pipa sekunder yang dihubungkan langsung ke konsumen atau sambungan
 langganan yang berdiameter 63 mm.
- Hasil simulasi program Epanet tekanan yang terjadi dengan nilai rata-rata 4.77
 m. Nilai tersebut aman dari tekanan yang ada di lapang sebesar 6 m.
- Untuk tekanan yang nilainya lebih besar dari 6 m, maka diameter pipa tersebut dirubah dengan diameter lebih kecil dari diameter sebelumnya.
- 4) Debit yang dihasilkan dari analisis tersebut aman, yang artinya semua pelanggan dapat memakai air dari PDAM tersebut. Hal tersebut dilihat dari hasil simulasi program Epanet, dengan nilai rata rata air mengalir 0,265 LPS (*Liter Per Second*).
- 5) Secara garis besar system perencanaan jaringan distribusi ini sudah termasuk dalam kriteria perencanaan yang disyaratkan dalam pedoman system jaringan

distribusi perpipaan, Direktorat Jenderal Cipta Karya, Kementerian Pekerjaan Umum.

5.2 Saran

Dari analisis sistem jaringan distribusi ini dapat dikemukakan beberapa saran sebagai berikut :

- Agar system jaringan distribusi ini berjalan dengan baik, segera perbaikan Batupapan, dimana letak bangunan penangkap air (brongkaptering) berada di bendung tersebut. Karena dari situ air disalurkan melalui 2 pipa distribusi yang mengalirkan air ke WTP lalu di alirkan kembali langsung ke konsumen. Jadi apabila ada kerusakan atau gangguan dari bangunan penangkap air tersebut maka akan berdampak juga kepada pipa-pipa yang langsung berhubungan dengan konsumen.
- 2) Pada setiap daerah yang dialiri air bersih dari PDAM tersebut, sebaiknya dilakukan perbaikan terhadap Water Meter karena ini berfungsi untuk mengecek tekanan air yang mengalir di daerah tersebut.
- 3) Agar tidak adanya pencurian air bersih ataupun kebocoran pipa distribusi, sering dilakukan pengecekan tekanan langsung ke lapang setiap seminggu sekali. Supaya tekanan di lapang sesuai dengan tekanan yang direncanakan sebelumnya.